

Messstelle nach §26 BImSchG für Geräusche und Erschütterungen Akkreditiertes Prüflaboratorium nach DIN EN ISO 17025 Akkreditiert durch:

Telefon

(0441) 570 61 25

Fax (0441) 570 61 10

Email info@itap.de

Postanschrift

Marie-Curie-Straße 8 26129 Oldenburg

Geschäftsführer

Dr. Manfred Schultz-von-Glahn Dipl. Phys. Hermann Remmers

Sitz

Marie-Curie-Straße 8 26129 Oldenburg Amtsgericht Oldenburg HRB: 12 06 97

Bankverbindung

Raiffeisenbank Oldenburg Kto.-Nr. 80 088 000 BLZ: 280 602 28

Offshore Wind Farm Eneco Luchterduinen

Ecological monitoring of underwater noise during piling at Offshore Wind Farm *Eneco Luchterduinen*

Version 6

Project Number: 2322-14-bel

Client: Clusius C.V. Marten Meesweg 5 3068 AV Rotterdam Netherlands (Eneco Luchterduinen)

Execution: itap GmbH Institute of technical and applied physics Marie-Curie-Straße 8 D 26129 Oldenburg Germany Patrick Remmers, B. Eng. Dr. Michael A. Bellmann

Version	Date	Changes
Version 1	12.12.2014	draft
Version 2	06.02.2015	Integrated change requests by the client
Version 3	01.06.2015	Integrated change requests by Rijkswaterstaat Zee & Delta
Version 4	15.06.2015	Integrated change requests by the client
Version 5	09.07.2015	Integrated minor change requests by the client
Version 6	29.10.2015	Integrated change requests by Rijkswaterstaat Zee & Delta

List of changes

Table of Contents

1.	Abstract	5
2.	Assignment of Tasks and Local Conditions	8
3.	Hydro Sound Measurements	10
	3.1 Measuring Concept	10
	3.2 Hydro Sound Measurement Device and CTD-Device	11
	3.2.1 General	11
	3.2.2 Mooring system	12
	3.2.3 Hydrophones	14
	3.2.4 File formats (signal specifications)	14
	3.2.5 Overview of used devices	15
	3.2.6 CTD Multiparameter probe	16
	3.3 Practical implementation	18
4.	Evaluation of Hydro Sound Measurements	20
	4.1 General Aspects	20
	4.2 Definitions	20
	4.3 Evaluation Concept	22
	4.4 Measuring Uncertainty and Measuring Variance	23
	4.4.1 Measuring Uncertainty	23
	4.4.2 Measuring Variance	23
5.	Measurement Results	24
	5.1 Pile Driving Noise	24
	5.1.1 Introduction	24
	5.1.2 Underwater noise during pile driving	25
	5.2 Ambient Noise	30
	5.3 Underwater noise from deterrence devices (<i>Faunaguard</i>)	34
6.	Discussion	34
	6.1 Variances of the source level caused by different pile conditions	34
	6.1.1 Impact of time variant conditions	36
	6.1.2 Impact of differences in pile geometry and location	
	6.1.3 Comparison with underwater noise in other Offshore Wind Farms	41
	6.2 Sound propagation	42
	6.2.1 Comparison of the attenuation with calculation models	42
	6.2.2 Sound propagation in time domain	44
	6.2.3 Sound propagation in frequency domain	46
	6.3 Conclusions	48
7.	Literature	49

Annex 1:	Plots of measurement results for each measuring position and each pile50
A1.1	Pile Driving Noise for monopile EL3950
EL39	MP1 2 m pile driving noise
EL39	MP1 10 m pile driving noise
EL39	MP2 2 m pile driving noise54
EL39	MP2 10 m pile driving noise
EL39	MP3 2 m pile driving noise
EL39	MP3 10 m pile driving noise60
EL39	MP4 2 m pile driving noise
EL39	MP4 10 m pile driving noise64
A1.2	Pile Driving Noise for monopile EL4266
EL42	MP1 2 m pile driving noise66
EL42	MP1 10 m pile driving noise68
EL42	MP2 2 m pile driving noise70
EL42	MP3 2 m pile driving noise72
EL42	MP3 10 m pile driving noise74
EL42	MP4 2 m pile driving noise76
EL42	MP4 10 m pile driving noise
A1.3	Ambient Noise for EL3980
EL39	MP1 2m ambient noise80
EL 39	0 MP1 10 m ambient noise82
EL 39	0 MP2 2 m ambient noise84
EL 39	MP2 10 m ambient noise86
EL 39	MP3 2 m ambient noise88
EL 39	0 MP3 10 m ambient noise90
EL 39	0 MP4 2 m ambient noise92
EL 39	0 MP4 10 m ambient noise94
A1.4	Ambient Noise for monopile EL4296
EL 42	2 MP1 2 m ambient noise96
EL 42	2 MP1 10 m ambient noise98
EL 42	2 MP2 2 m ambient noise
EL 42	2 MP2 10 m ambient noise102
EL 42	2 MP3 2 m ambient noise104
EL 42	2 MP3 10 m ambient noise106
MP 4	2 MP4 2 m ambient noise108
MP 4	2 MP4 10 m ambient noise110
Annex 2:	Measurement Devices 112
Annex 3:	Calibration and certifications
Annex 4:	Vessel traffic information114
Annex 5:	Observed weather conditions116

List of Figures

Figure 1: Overview map from the area around Offshore Wind Farm "Eneco Luc	chterduinen"8
Figure 2: Overview map from the Offshore Wind Farm "Eneco Luchterduinen"	9
Figure 3: Measurement positions inside and outside the OWF construction an	ea11
Figure 4: Stand-alone deployed hydro sound measurement device	
Figure 5: Schematic depiction of a long-term hydro sound recording	
Figure 6: Schematic diagram of a hydro sound measuring system	
Figure 7: Calculated sound velocity profiles (red and green) compared with r	neasured data17
Figure 8: Calculated sound velocity profiles	

Figure 9: Sample of pile driving noise (transient noise) measured in 750 m distance	25
Figure 10: Results of the pile driving noise on foundation EL39	28
Figure 11: 1/3-Octave spectra of the Sound Exposure Level (SEL) measured at MP1 _{EL39}	29
Figure 12: Histogram of the Sound Exposure Level (SEL) measured in 750 m	29
Figure 13: Time dependent zero-to-peak (L _{Peak}) and Sound Pressure Level (SPL _{5s})	32
Figure 14: Measured Sound Pressure Level (SPL _{5s}) in 1/3 Octave bands at MP1 _{EL39}	33
Figure 15: Histogram of the Sound Pressure Level (SPL _{5s}) measured at MP1 _{EL39}	33
Figure 16: SEL during the pile driving of EL39 and EL42.	
Figure 17: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1 _{EL42}	
Figure 18: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1 _{EL39}	
Figure 19: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1 _{EL42}	
Figure 20: 1/3-Octave spectra of the SEL for EL39 (cyan) and EL42 (magenta)	40
Figure 21: Measured Sound Exposure Level (SEL) in different windfarms	42
Figure 22: Measured Sound Exposure Level (SEL, blue) as a function of distance	
Figure 23: Sound pressure (p) as a function of time for one single blow	46
Figure 24: SEL ₅₀ 1/3-octave for the pile EL39 on the measuring positions	47

List of Tables

Table 1: Pile and foundation conditions for the monopiles EL39 and EL42.	5
Table 2: Overview of pile driving noise for foundation EL39	6
Table 3: Overview of pile driving noise for foundation EL42	6
Table 4: Pile parameter of the locations EL39 and EL42.	
Table 5: Measurement positions and distances	11
Table 6: Devices applied for hydro sound measurements.	15
Table 7: Hydrophones and File Formats applied on every Position	16
Table 8: Recording times of each measurement position	19
Table 9: Sound Exposure Level (SEL) measured at different measurement locations	26
Table 10: Sound Exposure Level (SEL) measured at different measurement locations	26
Table 11: Evaluation periods for each foundation for ambient noise.	
Table 12: Evaluation of the measured ambient noise	
Table 13: Evaluation of the measured ambient noise	
Table 14: Pile and foundation conditions for the monopiles EL39 and EL42	35
Table 15: Median of the signal duration τ_{90} for different measuring positions	45

1. Abstract

Clusius C.V., as a subsidiary of *Eneco Luchterduinen*, conducted pile driving works for the offshore wind farm (OWF) *Eneco Luchterduinen* in the Northern Sea (Dutch area). One of the requirements for the construction and operation of windpark Eneco Luchterduinen (Q10) in the permit¹ is the conduction of a monitoring and evaluation Program (MEP). One part of this MEP is the measurement of underwater noise during piling.

In accordance to the requirements, underwater noise during pile driving was measured at two different monopiles, at four distances (750 m to several kilometers) from the source. The technical differences between the two monopiles are listed in Table 1.The measurements during pile driving were used to determine the underwater noise of piling at large distances. Also, a comparison between the underwater noise of a 'standard monopile'(EL 39) and an innovative monopile (EL42) has been made. Additionally, the ambient noise before and after piling was measured. The obtained data will be used for the validation of the TNO models (Aquarius and Zampoli). This validation is outside the scope of this report.

Foundation	EL39	EL42
Diameter [m]	5.00	5.00
Scour protection	Yes	no
Pile length [m]	68.46	75.93
Penetration depth [m]	29.62	38.03
Water depth [m]	21.80	20.50
Total blows	2,971	3,628
Total blow energy [kJ]	1,966,092	3,078,621
Max. blow energy [kJ]	830	1,110

Table 1: Pile and foundation conditions for the monopiles EL39 and EL42.

¹ Beschikking Besluit inzake aanvraag Wbr-vergunning offshore windturbinepark 'Q10' (WSV/2009-914), 2 November 2009)

The measured Sound Exposure Levels (SEL) and their Standard Deviations (SD) during pile driving activities are listed in the following tables:

EL39 (Monopile with scour protection, Pile length: 68.46 m)							
Measurement-		Dictorco	Distribution level of SEL [dB re 1 µPa ² s]				
height above seabed	Position	[m]	minimum	mean	median	max	SD
	MP1 _{EL39}	750	170	175	175	178	1
2 m	MP2	4,724	154	158	158	160	1
2 111	MP3	13,232	138	143	143	144	1
	MP4	46,578	< 120	< 120	< 120	< 120	
10 m	MP1 _{EL39}	750	169	174	174	176	1
	MP2	4,724	154	159	159	161	1
	MP3	13,232	139	145	146	147	1
	MP4	46,578	< 120	< 120	< 120	< 120	

 Table 2: Overview of pile driving noise for foundation EL39.

EL42 (Monopile without scour protection, Pile length: 75.93 m)							
Measurement-	asurement- Distance Distribution level of SEL [dB re 1 µPa ² s]						
height above seabed	Position	[m]	minimum	mean	median	max	SD
	MP1 _{EL42}	750	168	173	173	175	1
2 m	MP2	5,245	151	155	155	157	1
2 111	MP3	13,749	139	143	144	145	1
	MP4	47,054	< 118	< 118	< 118	< 118	
	MP1 _{EL42}	750	167	171	171	173	1
10 m	MP2	5,245	not valid*	not valid*	not valid*	not valid*	
	MP3	13,749	141	146	146	147	1
	MP4	47,054	< 118	< 118	< 118	< 118	

*Hydrophone cable got damaged during deployment.

Impact of different pile designs

For the standard monopole (EL39) with scour protection the Sound Exposure Level (SEL) was between 2 dB to 3 dB higher than for the longer innovative monopole EL42. A reason for the higher levels could not be verified. The differences are most likely measurement uncertainties. As expected, the results for the Sound Exposure Level (SEL) at the longer pile showing spectra which are shifted to deeper frequencies which is due to a deeper natural resonance frequency (eigen frequency).

Attenuation over large distances

When using common propagation models like the geometrical absorption - 15 $log_{10}(d - distance ratio)$ or the semi-empirical attenuation approach of Thiele & Schellstede (1980), the calculated attenuation of the pile driving noise at large distances was much lower than the observed attenuation. The observed attenuation in 2 m above the seabed was slightly higher than in 10 m above the seabed.

Up to a distance of 30 km the median Sound Pressure Level (SPL) was higher than the Sound Pressure Level (SPL) of the ambient noise. Due to a variance in ambient noise this distance in some cases increased to more than 40 km.

Comparison with other windfarms

The measured Sound Exposure Levels (SEL) of both monopiles was within the range of the Sound Exposure Levels (SEL) of other Offshore Wind Farms (based on measurement data of *itap GmbH*).

Ambient noise

The ambient noise measurements before and after pile driving were dominated by underwater noise generated by vessels passing the measurement. The unweighted Sound Pressure Levels (SPL_{,5s}) varied at all measuring positions, inside and outside the construction area, between 109 dB and 166 dB, in periods without underwater noise generated by pile driving. The mean values for the ambient noise were between 115 dB and 127 dB re 1 μ Pa². Values above 140 dB can be explained by vessel traffic. At the measuring positions MP1 to MP3 the noise level during pile driving was at least 6 dB higher than the ambient noise level measured between the single blows.

Oldenburg, the 29th October 2015

Renner

Patrick Remmers, B. Eng.

ellinam

Dr. rer. nat. Michael A. Bellmann

2. Assignment of Tasks and Local Conditions

The company *Eneco Luchterduinen* is building the OWF *Eneco Luchterduinen* in the North Sea (Dutch area). This OWF will consist of 43 offshore wind turbines (OWT) fixed into the seabed (sediment) by monopiles which will be founded by using impulse pile driving, see Figure 1 and Figure 2.

The Wind Farm includes a scope for innovation which is the result of a covenant signed with the Dutch government. The innovations include two locations where no scour protection is necessary. The only difference between these foundation methods (piles) is the length of monopiles: those ones without scour protection are longer and need to be driven deeper into the seabed. Both types have the same diameter and the same hammer (IHC S-1400 with maximum blow energy of 1.400 kJ) will be used for all monopiles. No noise mitigation measures during the pile driving activities will be applied.

Figure 1: Overview map from the area around Offshore Wind Farm "Eneco Luchterduinen" and the measurement positions outside the windfarm. The main traffic routes are marked by violet arrows (source: www.Openseamap.org).

Figure 2: Overview map from the Offshore Wind Farm "Eneco Luchterduinen". The locations for the hydro sound measurements EL39 and EL42 are marked by red circles.

The permit (Dutch competent authority: Rijkswaterstaat Zee & Delta) imposed general requirements regarding acoustic measurements (underwater or hydro sound) during these monopile installations:

- The underwater noise of hammering of two monopiles (pile driving activity) one with and one without scour protection - had to be measured at various distances from the source. These data will be used for validation of the TNO models (Aquarius and Zampoli) and the data should meet the specifications of the TNO standard (TNO report TNO-DV 2011 C251).
- Additionally the ambient noise between the both monopile installations needed to be measured.

The *itap* – *Institute for technical and applied Physics GmbH* was commissioned by the future operator *Eneco Luchterduinen* to perform appropriate hydro sound measurements inside and outside the construction site according to the TNO Standard (TNO report TNO-DV 2011 C251). In this report all hydro sound measurements are summarized and discussed.

3. Hydro Sound Measurements

3.1 Measuring Concept

The purpose of measuring underwater noise during piling was to gather information about the (propagation of) underwater noise generated by pile driving and more specific to gather data for validation of the TNO underwater sound propagation model. Two questions need to be answered by this monitoring program at OWF *Eneco Luchterduinen*:

- 1) What are the differences in underwater noise between the "standard monopile" (with scour protection) and the innovative monopile (without scour protection)?
- 2) What were the underwater noise levels caused by piling at larger distances (> 20 km range)?

For this reason the hydro sound were measured at four positions during pile driving of two different piles, EL39 with scour protection and EL42 without scour protection. The measurement positions MP2 to MP4 were fixed outside the OWF area; measurement MP1 were inside the OWF area and individual for each piling activity in a fixed distance of 750 m. At each measurement position four hydrophones in two different heights were used, 2 m and 10 m above the seabed, one hydrophone for ambient noise and one for pilling noise. Table 4 gives an overview of relevant pile parameter. The measurement positions are listed in Table 5 and Figure 3. All measurement positions inside and outside the OWF construction area were selected in cooperation with *Eneco*, the construction company (*Van Oord*) and the competent authority.

Darameter	Foundation			
Falameter	EL39	EL42		
Position [WGS 84]	52° 25.385′ N 004° 10.716′ E	52° 25.671' N 004° 11.119' E		
Foundation Type	monopile	monopile		
Scour protection	yes	no		
Diameter [m]	5.00	5.00		
Pile length [m]	68.46	75.93		
Pile mass [t]	472.44	610.79		
Penetration depth [m]	29.66	38.03		
Water depth [m]	21.50	20.60		

Table 4: Pile parameter of the locations EL39 and EL42.

Position	Location	Distance [km]		
POSICION	Lat	Lon	to EL39	to EL42
MP1 _{EL39}	52° 25.417′ N	004° 10.055' E	0.750	
MP1 _{EL42}	52° 25.577′ N	004° 10.474' E		0.750
MP2	52° 25.166′ N	004° 06.551' E	4.738	5.260
MP3	52° 24.603′ N	003° 59.081' E	13.269	13.788
MP4	52° 24.342′ N	003° 29.547′ E	46.711	47.189

Table 5: Measurement positions and distances

Figure 3: Measurement positions inside and outside the OWF construction area.

3.2 Hydro Sound Measurement Device and CTD-Device

3.2.1 General

For all measurement locations the same type of measuring device were used with different set-ups: different hydrophones for ambient noise or pile driving noise, different hydrophone heights on each measuring device and different file formats for different measurement positions, which leads to different recording times. The applied measurement systems for recording hydro sound are stand-alone (deployed) measuring systems that were developed

and built by *itap GmbH*. Figure 4 shows a photographical picture of a hydro sound measuring system incl. "light weighted" anchoring (mooring system, see details in chapter 3.2.2).

The measurement device consists of an anchor (mooring system), a box including all electronically devices and batteries, a rope including lifting bodies and a marker buoy (on the sea surface). Within this arrangement two hydrophones in heights of around 2 m and 10 m above seabed records the actual hydro sound (time recording). For pile driving and ambient noise different devices with different hydrophones were used.

Figure 4: Stand-alone deployed hydro sound measurement device with "light weighted" anchorage and marking in a two-channel hydrophone design by itap GmbH. For the measurements two of these systems were used for one measuring position, one device for ambient noise and one device for pilling noise.

3.2.2 Mooring system

The hydro sound measurement devices at the locations outside the OWF area (MP2, MP3 and MP4) were attached to a heavy "large" mooring system (Figure 5). On every location two hydro sound measurement devices were attached to the sediment rope from the large anchor stone (#1) to the small anchor stone (#2). The device for ambient noise measurements was fixed at 50 m distance and the device for pilling noise measurements at 90 m distance to the large anchor (anchor #1 in Figure 5) of the 100 m long "sediment rope".

The hydro sound measurement devices inside the construction area (MP1) were attached to a "light-weighted" mooring system consisting of a marker buoy (marker ball) with a small anchor system (Figure 6). Both devices were fixed on one mooring system (the two devices were fixed together by a special mechanical clamp; all hydrophones were attached on the same rope).

Figure 5: Schematic depiction of a long-term hydro sound recording for the measurement locations outside the OWF area (MP2 to MP4) with two devices (not to scale). In case of this measurement the two devices will be fixed to the sediment rope and each system will have two hydrophones in two different heights: 2 m and 10 m above seabed.

Figure 6: Schematic diagram of a hydro sound measuring system incl. "lighted weighted" anchorage (for the measurement location inside the OWF area – MP1). (not to scale)

3.2.3 Hydrophones

For the ambient noise measurements *Bruel & Kjær 8106* hydrophones (sensitivity of 2 mV/Pa) and *Reson TC4033* hydrophones (sensitivity of 0,5 pC/Pa) were used (depending on the distance of the measurement locations to the pile-driving activity). For the pile driving noise measurements *RESON TC4033* (sensitivity of 0,5 pC/Pa) or *Bruel & Kjær 8106* (sensitivity of 2 mV/Pa) hydrophones were used depending on the distance to the source of sound. Table 6 and Table 7 give an overview of all used devices and hydrophones. A detailed overview is listed in the Annex A2.1.

3.2.4 File formats (signal specifications)

The hydro sound measurement devices are able to record the time signal of the measured hydro sound at the hydrophone(s) in different recording or file formats by using different set-ups. According to the TNO measurement standard different options for the hydro sound recording formats and recording times (operational time offshore for each device) are possible. In the following subsection the selected and by the competent Dutch authority agreed file format, including device set-up, is summarized.

All measurement devices measured with a sampling frequency of 48 kHz. With this sampling frequency it is possible to record frequencies up to 24 kHz. In the following text all data is presented in 1/3-Octave bands with center frequencies between 20 Hz and 20 kHz. The 20 kHz Octave band is the complete Octave band below 24 kHz. The lower cut off frequency of 20 Hz is determined by the technical components of the measuring system.

Measurements were conducted with stand-alone underwater measuring systems for each foundation and location separately. Each system for measuring pile-driving activities or ambient noise was connected with two hydrophones in a determined water depth (2 m and 10 m above ground). Both signals per measurement device are fully synchronized per location.

Lossless file format (MP1 to MP3): The measuring systems recorded the hydro sound signals lossless (uncompressed) and in compliance with the actual available test code of the TNO-report (24 Bit resolution, PCM WAVE file format, 48 kHz sampling-rate). The used

measurement devices were able to measure the hydro sound max. 36 h (storage / operational time is limited).

Compressed file format (MP4): The measuring systems recorded the hydro sound signals in a compressed file format (MPEG1¹, 48 kHz sampling-rate). In this recording mode the hydro sound could be stored (operational time) for a period of four weeks.

The raw data of all measurements are stored on an external medium and will be provided by *itap GmbH* for further applications.

3.2.50verview of used devices

The main components used for the hydro sound measurements are listed in Table 6. Table 7 gives an overview for the different set-ups used on every position. All measuring devices applied are in accordance with the measuring instruction for underwater sound measurements from the German approval authority (Müller & Zerbst, 2011) and will also fulfill the requirements of the WD ISO 18406 (2014) + TNO report (2011).

Table 6:	Devices	applied	for I	hydro	sound	measurements.
----------	---------	---------	-------	-------	-------	---------------

Device	Producer	Important technical data/number of entities
Stand-alone underwater sound measuring system	Itap GmbH	Frequency range: 10 Hz- 20 kHz
Hydrophone TC 4033	RESON	sensitivity: about 0.5 pC/Pa number: 4 pieces
Hydrophone B&K 8106	Bruel & Kjær	sensitivity: ca. 2 mV/Pa number: 1 piece
Charge amplifier	Itap GmbH	0.1 mV/pC (only for TC4033)

¹ MPEG1 Audio Layer 3 to ISO IEC 11172 3 (Codingrates 32, 64 oder 96 kps per channel)

Position Hydrophone height [m]		Hydrop	hone	File F	ormat	Mooring	
		pilling ambient		Pilling ambient		system	
MD1	2	TC4033	TC4033	lossless	lossless	cmall	
MET	10	TC4033	TC4033	lossless	lossless	Sillatt	
MDO	2	TC4033	TC4033	lossless	lossless	largo	
MFZ	10	TC4033	TC4033	lossless	lossless	targe	
MDO	2	TC4033	B&K 8106	lossless	lossless	largo	
MILD	10	TC4033	B&K 8106	lossless	lossless	targe	
MD/	2	TC4033	B&K 8106	compressed	compressed	largo	
P1F4	10	TC4033	B&K 8106	compressed	compressed	large	

Table 7: Hydrophones and File Formats applied on every Position.

3.2.6 CTD Multiparameter probe

A multiparameter probe "CTD48" from Sun & Sun Marine Tech was used to measure the temperature, the static pressure and the salinity in the water column. On basis of these parameters it is possible to determine the sound velocity profile over the water column.

The mooring system of this device consisted of a rope (max. length 100 m) with an anchor weight of 2 kg at one end of the rope.

The sound velocity profile was recorded on every measuring position before deployment and after recovery. Even though the control light on the probe reported no error and a system check signalized that all data was successfully stored on the probe, it was impossible to read out the collected data. The CTD-probe got a storage error and also an emergency read out by the manufacturer was without success. Therefore no measured data for the sound velocity during these measurements is available. For this reason the sound velocity has to be calculated. For the calculation of a sound velocity profile different models are available. In this case the sound velocity profile was calculated by two different models due to Mackenzie (Mackenzie KV, 1981) and to Medwin (Medwin H, 1975).

Both calculations are empirical models in dependence of temperature, salinity and water depth. Figure 7 shows an example for calculated sound profiles compared with measured data in the North Sea. The blue line shows a sound velocity profile measured at the 13th June 2014 in the North Sea. The temperature was 15.6°C and the salinity 33.5 ppt over the whole water depth, except the last cm close to the sea bed and the surface. The green line shows the sound velocity due to Mackenzie (Mackenzie, 1981) and the red line due to Medwin (Medwin, 1975). The difference between both models is less than 1 m/s and the measured data fits between these calculations. For both models changes in temperature of 1°C leads to changes in sound velocity of 3.1 m/s and changes in salinity of 1 ppt to changes of 1.2 m/s.

Figure 7: Calculated sound velocity profiles (red and green) compared with measured data (blue line).

By knowing the temperature and salinity in the area it is possible to calculate a sound profile with a sufficient accuracy. The temperature was measured by a weather buoy in the construction field at the position: 52° 25.320′ N, 004° 10.020′ E in 824 m distance to location EL39 and 1,395 m distance to location EL42. During the pilling activities on EL39 between 17:00 and 19:00 at the 23th September the temperature was 18.0°C. During the pilling of EL42 between 02:00 and 04:00 at the 26th September the temperature was 17.6°C. The National Oceanographic Data Center (NODC, United States Department of Commerce)

published a salinity database for the North Sea. The closest salinity data measured in autumn is available from two measurements in 2011. One measured at the 22nd August in approx. 65 km distance north west from the location EL39 and one at the 23rd August in approx. 59 km distance north east. On both measurement positions the salinity was constant over the whole water depth. At the first position (North West) 34.4 ppt and 33.6 ppt at the second position (North East). For the calculation a salinity of 34.0 ppt is assumed. The calculated profiles are shown in Figure 8.

Figure 8: Calculated sound velocity profiles. The left axis shows the sound velocity for EL39 and the right axis for EL42.

3.3 Practical implementation

All hydro sound measuring systems in and outside the construction site were deployed a few hours before the pile driving work started after a coordinated procedure. According to the used file formats (see chapter 3.2.4) the devices at MP1, MP2 and MP3 were deployed and retrieved twice prior to and immediately after the end of pile driving for each pile. The measurement device on MP4 was deployed and retrieved only once before and after the end of both pile driving activities. The measurement times and the quality status of these measurements are listed in Table 8 for each position. All deployment and recovery works were done from the vessel *Reykjanes* by an employee of *itap GmbH* and instructed personal from the *Reykjanes*. All positions were determined by the GPS-system from the *Reykjanes*. Uncertainties of a few meters are possible due to the accuracy of the GPS-system and a possible drifting during the deployment. In relation to the measurement distance a drift of 10 m leads in 750 m distance to an inaccuracy of 1.3 % and in 1,500 m distance of 0.7 %.

 Table 8: Recording times of each measurement position and quality status for each used device.

Decition	Measurement time [utc]		Daw data status		
POSILIOII	start	end	Raw uala status		
MP1 _{EL39}	23.09.14 11:58	24.09.14 06:23	No valid ambient noise data for EL39 at 2 m above seabed are available. Rests of the data are valid.		
MP1 _{EL42}	25.09.14 14:26	26.09.14 06:11	Data of all 4 hydrophones are valid.		
	23.09.14 11:27	24.09.14 17:25	Data of all 4 hydrophones are valid.		
MP2	25.09.14 11:20	26.09.14 06:43	No valid pilling noise data for EL42 at 10 m above seabed are available. Rests of the data are valid.		
MDO	23.09.14 10:49	24.09.14 16:52	Data of all 4 hydrophones are valid.		
ר זויז	MP3 25.09.14 12:46 26.09.14 07:34		Data of all 4 hydrophones are valid.		
MP4	23.09.14 08:20	26.09.14 10:20	Data of all 4 hydrophones are valid.		

During the measurements of ambient noise on location $MP1_{EL39}$ at 2 m height some rubbing sounds were detected. It can be assumed that prevailing currents drifted flotsam to the hydrophone which caused the sounds. The calculated levels of this measurement are influenced by the rubbing noise, so the measured data for this hydrophone is not valid accordingly.

At the measuring position MP2 the 10 m hydrophone cable for the pile driving noise measurement was damaged during the 2nd deployment mechanically (technical defect of the used hydrophone). The second hydrophone for the ambient noise on this position was too sensitive to record the pilling noise. For this reason no measurement data are available for the pile driving activities at pile EL42.

The CTD-probe got a storage error (chapter 3.2.6). It was not possible to read out the collected data. Therefore no measured data for the sound velocity during these measurements are available.

4. Evaluation of Hydro Sound Measurements

4.1 General Aspects

All measurements are evaluated according to the TNO report "standard for measurement and monitoring of underwater noise, Part II (2011)".

Within the framework of this report all measuring positions during pile driving activities of the monopiles were evaluated and the results were summarized, which includes all measuring positions in- and outside the construction site. For this purpose *Eneco Luchterdu-inen* provided the respective pile driving protocol.

4.2 Definitions

For the following evaluation following terms and definitions according to the TNO report apply:

Unweighted Sound Pressure Level (SPL) for continuous sound

Ten times the logarithm to the base 10 of the square of ratio of a given root-mean-square sound pressure to the reference sound pressure

$$SPL = 10 \log_{10} \frac{1}{T} \int_0^T \frac{p(t)^2}{p_{ref}^2} dt$$
 in dB re 1 µPa²

in which p(t) stands for the instantaneous sound pressure, p_{ref} for the reference sound pressure 1 µPa and *T* for the average time².

Unweighted zero-to-peak acoustic pressure (p_{peak}) for transient sounds

The maximum absolute value of the unweighted instantaneous sound pressure (p) during a stated time interval.

$$p_{peak} = max(|p(t)|)$$
 in Pa

² The SPL is also referred to as the equivalent continuous sound (pressure) level (L_{eoT}).

Unweighted zero-to-peak sound pressure level (L_{Peak}) for transient sounds

Ten times the logarithm to the base 10 of the ratio of the square of the *unweighted zero-to*peak acoustic pressure (p_{peak}) to the square of the reference sound pressure

$$L_{Peak} = 10 \log_{10} \frac{p_{Peak}^2}{p_{ref}^2} \qquad \text{in dB re 1} \mu \text{Pa}^2$$

in which p_{ref} is the reference sound pressure 1 µPa.

Unweighted Sound Exposure Level (SEL) for transient sounds

Ten times the logarithm to the base 10 of the ratio of the unweighted sound exposure (E) to the reference sound exposure (E_{ref}) the sound exposure being the time integral of the time-varying square of the unweighted instantaneous sound pressure over a transient sound event³.

$$SEL = 10 \log_{10} \frac{E}{E_{ref}}$$
 in dB re 1 µPa²s

With the unweighted sound exposure $E = \int_{-\infty}^{\infty} p(t)^2 dt$ and the reference exposure $E_{ref} = p_{ref}^2 \cdot T_{ref}$ in which p_{ref} is the reference sound pressure 1 µPa and T_{ref} the reference duration 1 s.

N percent exceedance level

The unweighted Sound Pressure Level (in dB re 1 μ Pa²) or sound exposure level (in dB re 1 μ Pa²s) for continuous sound that is exceeded for N % of the time interval considered.

Signal duration (τ_x) for transient sounds

The time during which a specified percentage x of unweighted sound exposure occurs (e.g. τ_{g_0} is the time window during which 90 % of the energy arrives), expressed in milliseconds (ms).

³ The sound exposure level is also referred to as L_{ET} , or L_{ET} when the exposure is defined over a specified time interval *T*.

4.3 Evaluation Concept

All hydrophone signals are available as time signals (MPEG1¹ or PCM-WAV-files). The sampling frequency of the stand-alone deployed measuring systems at all positions was $f_s = 48$ kHz.

Initially the typical low frequency signals of the hydrophone signals generated by wind or pounding of the waves, were reduced by high pass filtering (limit frequency 20 Hz, Butterworth-Filter 6th order).

Determining the *unweighted Sound Pressure Level (SPL)* for continuous sound over a period of 5 s and the *Sound Exposure Level (SEL)* were conducted by using a bandpass filterbank according to IEC 1260:1995 standard. Third octave spectra are limited to the frequency range >12.5 Hz \leq 20 kHz for any further depiction of results.

Following parameters, based on measuring instructions of the TNO report, are specified for documentation:

- the maximum SEL
- the median (50 % exceedance) SEL
- the mean and the standard deviation (SD) of the SEL
- the minimum SEL

All of the mathematical operations were carried out by a program developed by *itap GmbH* for Python (in combination with SciPy). The program was verified with the aid of a spectrum analyzer (HP35670a Dynamic Signal Analyzer). Determination (calculation) of SPL is based on DIN 45641. Depicted percentile parameters are determined analogously to the described procedure in VDI 3723, sheet 1.

4.4 Measuring Uncertainty and Measuring Variance

4.4.1 Measuring Uncertainty

According to the measuring concept for underwater sound measurements by the German approval authority BSH (Müller & Zerbst, 2011), only measuring systems whose entire measurement chain has a deviation with sensitivity of < 2 dB and \pm 1 dB may be applied. Measuring systems developed by *itap GmbH* fulfil these requirements and have a high reproducibility of $\leq \pm$ 1 dB concerning hydrophones and electric measuring chain (full measurement device). Moreover all used hydrophones are calibrated by the manufacturer regularly (full spectrum calibration each 2 years) and by *itap GmbH* regularly (point source calibration). Additionally, each measurement device (recorder) will be calibrated by a defined electrical point source before and after each offshore application. The used measurement devices fulfil also the requirements of the WD ISO 18406 (2015).

Due to fluctuations in water depth, wave height and temperature etc., an unsystematic measurement uncertainty in repeated measurements in the range of \geq 2 dB was often observed during field measurements under offshore conditions, even with calm sea. A systematic study on this issue is currently not available.

4.4.2 Measuring Variance

In the following chapters it becomes apparent that Sound Exposure Levels measured during pile driving of one pile differ significantly to some extent (\geq 6 dB). These differences are not due to systematic or unsystematic measuring uncertainties but can partly be explained by the applied used blow energy (for example, maximum energy and soft start) and/or by the sound reflecting pile skin surface (a large sound radiating surface in water will lead to higher noise level than a small surface).

Recent measurement results from the construction monitoring of other offshore wind farms (confidential studies of *itap GmbH* within OWF construction phases in Europe) show that not only the used blow energy but also layers and components of the sediment can have a considerable impact on emitted hydro sound (ground coupling effects). Whether and to what extent further parameters have an impact is currently studied in other research

projects, for instance German research project BORA (project ID 0325421A/B/C funded by BMU, BMWi and PTJ).

Therefore, those differences of the measuring results have to be regarded as measuring variance and not measuring uncertainty. They are used for characterization of all pile driving activities qualitatively and quantitatively by indicating the 5%, 50% and 90% percentile of the Sound Exposure Level (SEL).

5. Measurement Results

The measured hydro sound pollutions (immissions) during the installation phase of the two selected monopiles EL39 and EL42 are separated in two different kinds of noises, (i) transient and (ii) continuous noise. (i) The transient noise immissions (impulse like) are radiated from the pile driving activities on both monopiles (pile driving noise). (ii) All other underwater sound measurements are defined as ambient noise which contains not only the natural background noise inside the water but also vessel noise.

5.1 Pile Driving Noise

5.1.1 Introduction

During pile driving activities each blow is producing a bending wave in the pile which is moving from the head of the pile downwards and is reflecting on the bottom of the pile. This moving wave produces local deformations in the pile which radiates short pressure fluctuations in water. These pressure fluctuations in water can be measured by hydrophones and can be interpreted as pile driving noise or radiated noise from percussive pile driving (see Figure 9). The complete acoustical energy transmitted into the water can be described with the following three acoustic metrics:

- (i) the Sound Exposure Level (SEL),
- (ii) the maximum zero-to-peak Level (L_{Peak}) and
- (iii) the signal duration of each noise impulse (τ_{90}) , see chapter 4.3.

(i) The Sound Exposure Level (SEL) for one blow is the value of the whole energy transmitted by one single blow expressed as a level. In order to compare the energy of one blow with the energy of other blows the energy is normalized to a time of one second. (ii) The maximum zero-to-peak Level (L_{Peak}) expressed the value of the maximal sound pressure during one blow as a level (red arrow in Figure 9).

(iii) The signal duration (τ_{90}) describes the time window during which 90 % of the energy arrives (grey shaded area in Figure 9). This value is a good indicator for the quality of a measurement. If the signal to noise ratio is poor, the energy of background noise can account on more than 10 %. In this case the signal duration (τ_{90}) is increasing rapidly. Smaller variances (< 100 ms for distances < 10 km) could be caused in dependence of the distance by dispersion (see Chapter 6.2.2).

Figure 9: Sample of pile driving noise (transient noise) measured in 750 m distance. Blue: time signal of 0.5 seconds (1 blow) during pile driving of monopile EL39. Grey: Signal duration τ₉₀.

5.1.2 Underwater noise during pile driving

The distribution of the Sound Exposure Levels (SEL) separated for each measurement positions during the pile driving activities on the foundations EL39 and EL42 are summarized in Table 9 (EL39) and Table 10 (EL42). On position MP4 it was not possible to determine any pilling noise. For this reason the lowest unweighted Sound Pressure Level

 (SPL_{5s}) during pilling is listed as the maximal possible value for the Sound Exposure Levels (SEL).

Table 9: Sound Exposur	e Level (SEL)	measured	at different	measurement	locations	during	the
installation	of the mono	pile at fou	ndation EL39	9.			

EL39 (Monopile with scour protection, pile length: 68.46 m)										
Hydrophone-	Desition	Distance	So	Sound Exposure level (SEL) [dB re 1 µPa²s]						
height	POSILIOII	[m]	minimum	mean	median	max	SD			
	MP1 _{EL39}	750	170	175	175	178	1			
3 m	MP2	4,724	154	158	158	160	1			
2 m	MP3	13,232	138	143	143	144	1			
	MP4	46,578	< 120	< 120	< 120	< 120				
	MP1 _{EL39}	750	169	174	174	176	1			
10 m	MP2	4,724	154	159	159	161	1			
10 m	MP3	13,232	139	145	146	147	1			
	MP4	46,578	< 120	< 120	< 120	< 120				

Table 10: Sound Exposure Level (SEL) measured at different measurement locations during the installation of the monopile at foundation EL42.

EL42 (Monopile without scour protection, pile length: 75.93 m)										
Hydrophone-	Desition	Distance	Si	Sound Exposure Level SEL [dB re 1 µPa ² s]						
height	POSILIOII	[m]	minimum	mean	median	max	SD			
	MP1 _{EL42}	750	168	173	173	175	1			
0	MP2	5,245	151	155	155	157	1			
2 111	MP3	13,749	139	143	144	145	1			
	MP4	47,054	< 118	< 118	< 118	< 118				
	MP1 _{EL42}	750	167	171	171	173	1			
10 m	MP2	5,245	n.v.4	n.v.4	n.v.4	n.v.4				
	MP3	13,749	141	146	146	147	1			

⁴ The cable for the pile driving noise measurement device was damaged during the 2nd deployment mechanically (technical defect of the used hydrophone).

MP4 47,054	< 118	< 118	< 118	< 118	
------------	-------	-------	-------	-------	--

A detailed overview of all results for all measurement positions and both foundations (monopile EL39 and EL42) is summarized in Appendix A1. As an example Figure 10 to Figure 12 shows the measurement results for $MP1_{EL39}$ in 750 m for the hydrophone height of 2 m. The relevant chronical sequence of the Sound Exposure Level (SEL) and zero-to-peak Level (L_{Peak}) are presented in Figure 10 as time dependent single value distribution as well as time and frequency dependent spectrogram (first two plots). The first plot shows the Sound Exposure Level (SEL) and the zero-to-peak Level (L_{Peak}) for every single blow and the unweighted Sound Pressure Level (SPL) in 5 second intervals. The distribution of the Sound Exposure Level (SEL) is within the range shown in Table 9. The unweighted Sound Pressure Level (SPL) is nearly similar to the Sound Exposure Level (SEL) which is always the case when 5 blows are within a 5 second interval. The unweighted Sound Pressure Level (SPL) is also shown in the second plot as a spectrogram. The difference between the first plot is that the unweighted Sound Pressure Level (SPL) is split in 1/3 octave components. The frequency is listed on the y-axis and the time on the x-axis. The value of the unweighted Sound Pressure Level (SPL) in every 1/3 octave band is marked by different colors, red for high levels and blue for low levels. The frequency composition of the unweighted Sound Pressure Level (SPL) is similar to the Sound Exposure Level (SEL).

The Sound Exposure Level (SEL) and the used blow energy are presented in the same figure as a function of time to illustrate the impact of used blow energy on the radiated pile driving noise (third plot of Figure 10). The last plot of Figure 10 shows the time depending signal duration τ_{90} each single blow.

Figure 11 shows the Sound Exposure Level (SEL) distribution as 1/3-octave spectra for the pile installation EL39 at the measurement position MP1_{EL39} in 750 m distance as an example of the results of Table 10. In the histogram in Figure 12 the distribution of the Sound Exposure Level (SEL) at this measurement position is depicted. On this position all measured Sound Exposure Level (SEL) were within a range between 171 dB and 177 dB. During this measurement 44 % of all blows had a Sound Exposure Level (SEL) of 174 dB.

Figure 10: Results of the pile driving noise on foundation EL39 (monopile with scour protection) in 750 m distance $(MP1_{39}; hydrophone height: 2 m above seabed).$ Plot on top: Time depending Sound Exposure Level (SEL), Sound Pressure Level (SPL_{5s}) and Peak Level (L_{Peak}). 2^{nd} plot: 1/3-octave spectrogram of the SEL (depending on time and frequency) The Y-axis is conform DIN 461. Hz between 8 k and 2k should be read as 4k. This is the case in all figures in the report., 3^{rd} plot: SEL as well as used blow energy as function of time, bottom: measured signal duration (τ_{90}).

Figure 11: 1/3-Octave spectra of the Sound Exposure Level (SEL) measured at MP1_{EL39} (hydrophone height: 2 m above seabed).

Figure 12: Histogram of the Sound Exposure Level (SEL) measured in 750 m distance (MP1_{EL39}) during the installation of the monopile at EL39 (hydrophone height: 2 m above seabed).

5.2 Ambient Noise

The continuous ambient noise is analyzed in averaged unweighted Sound Pressure Levels (SPL) for a period of five seconds (SPL_{5s}). For the evaluation of the ambient noise for each monopile two time windows per foundation are chosen before and directly after the pile driving activity of each foundation took place. The chosen time windows are listed in Table 11 for each foundation. The piling activities took place during the time between the first and the second time window.

Foundation	Time window [utc]							
Toundation	Date	Start- time	End-time					
EI 20	2014-09-23	15:00	17:24					
ELSA	2014-09-23/24	18:53	06:00					
EL / 2	2014-09-25/26	18:00	01:35					
LL4Z	2014-09-26	03:20	06:00					

Table 11: Evaluation periods for each foundation for ambient noise.

The distribution of the measured Sound Pressure Level (SPL₅₅) for all measurement positions before and after each pile driving activity is expressed in different percentiles and summarized in Table 12 and Table 13. Similar to the figures of the pilling noise the time dependent SPL_{5s} behavior as broadband value and frequency dependent analysis (spectrogram), a presentation of the above mentioned distribution levels as a function of frequency and the distribution are shown in Appendix A.1. The recorded ambient noise is dominated by noise emissions from vessels. The next shipping lanes are in a distance 2 km to MP4, 4 km to MP3 and 5 km to MP2 and MP1 (see Annex 4). Figure 13 to Figure 15 give an example for the measurement position MP1 in 750 m distance to the monopile EL39 at a hydrophone height of 2 m. Between 00:00 and 01:00 on September 24th the sound pressure level was increasing to more than 160 dB. This steadily increase and decrease is typical for passing vessels. By hearing the recorded sound files this assumption was confirmed. It was possible to hear an engine and the cavitation noise from a vessel propeller. To determine the distance of this vessel the contactor *Eneco Luchterduinen* provided the AIS-Data for this duration but it was not possible to assign this event to a recorded vessel track (see Annex 4).

топс	pile EL39.								
	EL39								
Hydrophone-		Distance		Sound	Pressure	Level SPL _{5s}	[dB re 1 µF	Pa²]	
height	Position	[m]	minimum	95 % exceedance	mean	median	5 % exceedance	max	SD
	MP1 _{EL39}	750	n.v. ⁵	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.
2 m	MP2	4,724	111	112	118	116	132	156	6
2 111	MP3	13,232	109	111	117	117	125	135	4
	MP4	46,578	114	117	126	126	135	148	5
	MP1 _{EL39}	750	121	122	128	126	142	166	6
10 m	MP2	4,724	111	112	118	116	132	156	6
10 111	MP3	13,232	108	110	116	115	124	134	4
	MP4	46,578	114	117	126	125	135	147	5

Table 12: Evaluation of the measured ambient noise by showing the Sound Pressure Level (SPL_{5s}) distribution before (2.5 hours) and after (7.0 hours) the installation of the monopile EL39.

Table 13: Evaluation of the measured ambient noise by showing the Sound Pressure Level (SPL_{5s}) distribution before (7.5 hours) and after (2.5 hours) the installation of the monopile EL42.

EL42									
			Sound Pressure Level SPL _{5s} [dB re 1 µPa ²]						
Hydrophone- height	Position	Distance [m]	minimum	95% exceed- ance	mean	median	5 % exceed- ance	max	SD
	MP1 _{EL42}	750	113	118	126	126	133	139	4
2 m	MP2	5,245	109	112	121	120	136	156	7
2 111	MP3	13,749	110	112	119	119	128	139	5
	MP4	47,054	116	119	127	127	136	144	5
	MP1 _{EL42}	750	113	118	126	126	133	139	4
10 m	MP2	5,245	109	112	121	120	136	156	7
10 m	MP3	13,749	110	112	119	119	128	139	5
	MP4	47,054	116	119	127	127	136	144	5

⁵ During the measurements of ambient noise on location $MP1_{EL39}$ at 2 m height some rubbing sounds were detected. It can be assumed that prevailing currents drifted flotsam to the hydrophone which caused the sounds. The calculated levels of this measurement are influenced by the rubbing noise, so the measured data for this hydrophone is not valid accordingly (SNR < 6 dB).

Figure 13: Time dependent zero-to-peak (L_{Peak}) and Sound Pressure Level (SPL_{5s}) distribution of the ambient noise measurements at the measurement position MP1_{EL39} before and after the installation of the monopile EL39 (hydrophone height 2 m above seabed). Top: SPL_{5s} and L_{Peak} values versus time. Bottom: Spectrogram of SPL_{5s} (frequency resolution in 1/3 Octaves).

Figure 14: Measured Sound Pressure Level (SPL_{5s}) in 1/3 Octave bands at $MP1_{EL39}$ before and after the installation of the monopile EL39 (hydrophone height: 2 m above seabed).

Figure 15: Histogram of the Sound Pressure Level (SPL_{5s}) measured at $MP1_{EL39}$ before and after the installation of the monopile EL39 (hydrophone height: 2 m above seabed). Sound Pressure Level (SPL_{5s}) \geq 140 dB were always caused by passing vessels und could be subjective identified by listening sound samples.

5.3 Underwater noise from deterrence devices (Faunaguard)

In order to protect harbor porpoises against hearing impairments caused by noise pollution during pile driving, a deterrence device (*Faunaguard, harbor porpoise module*) was used to scare away the animals from the construction area before piling. The *Faunaguard* device was switched on approx. 15 minutes before the first blows and switched off after piling. On location EL39 the *Faunaguard* device was in use between 16:30 and 18:55 UTC time and on location EL42 between 01:10 and 03:20 UTC time.

All used measurement devices measured with a sampling frequency of 48 kHz, for this reason it only possible to record any frequencies up to 24 kHz. The *Faunaguard* device emits noises in a frequency range between 60 kHz and 150 kHz. So it was not possible to measure the underwater noise of the *Faunaguard* device with the used measurement devices for hydro sound.

6. Discussion

Beside the validation of the TNO underwater sound propagation models (not task of this report) two questions need to be answered by this monitoring program:

- 1) What are the differences in underwater noise between the "standard monopile" (with scour protection) and the innovative monopile (without scour protection)?
- 2) What are the underwater noise levels caused by piling at larger distances (> 20 km range)?

To answer the first question the differences in source level will be analysed and compared with different installation parameter. Ideally it would be possible to assign a cause to certain sound events. For the second question some effects of the sound propagation during these measurements has to be determined and compared with common propagation models.

6.1 Variances of the source level caused by different pile conditions

Generally the source level symbolises the sound power of a source. In the literature it is often called the Sound Pressure Level (SPL) at one meter distance to the pile. This is a virtual value, that cannot be determined by measurements because a pile emits sound over the whole surface not on a single point (moving point source see chapter 5.1). Additionally in the acoustic near field measurements of the sound pressure and the sound velocity are needed to characterize the strength of sound or sound intensity but sound velocity sensors for underwater noise are not available or not accurate. In the following text the measured source level is defined as the level measured at 750 m distance. To reduce the impact parameter for comparison of the source level only the measurements at a height of 2 m above the seabed will be used. The differences between both measuring heights will be discussed in the following chapter 6.2.3.

Responsible for the source level are (i) the strength of the pile vibrations and (ii) the size of the sound radiating surface in the water column. The main differences between the two measured monopiles are the length and the scour protection. On the position of EL39 a scour protection was deployed around the pile location before the installation. On location EL42 a new pile design was tested. By using a longer monopile it is possible to dispense of the scour protection. The main conditions for both piles are compared in Table 14.

Foundation	EL39	EL42
Diameter [m]	5.0	5.0
Scour protection	Yes	No
Pile length [m]	68.46	75.93
Pile mass [t]	472.44	610.79
Penetration depth [m]	29.62	38.03
Water depth [m]	21.50	20.60
Total blows	2,971	3,628
Total blow energy [kJ]	1,966,092	3,078,621
Max. blow energy [kJ]	830	1,110

Table 14: Pile and foundation conditions for the monopiles EL39 and EL42.

Differences in pile and foundation conditions could be separated in two different classes. The time variant conditions, like the blow energy and the penetration depth, and the time invariant conditions, like the pile geometry.

In Figure 16 the broadband Sound Exposure Level (SEL) is plotted over the blow count for both piles EL39 (cyan) and EL42 (magenta). This figure shows variances of the Sound Exposure Level (SEL) of around 6 dB during the installation time of each pile. This variance of 6 dB can be attributed to the impact of the time variant conditions (used blow energy

and penetration depth). This figure shows also that the Sound Exposure Level (SEL) for monopile EL39 is higher than for monopile EL42 and that during the whole installation. Possible reasons could be differences during the installation (e.g. pile design, used blow energy, coupling between pile and hammer, penetration depth, etc.), geological differences like the soil conditions or water depth or simply the measuring variance (see chapter 4.4). The fact that the Sound Exposure Level (SEL) on EL39 is higher over the whole installation leads to the assumption that the reason must be a difference which is continuing over the whole installation. Therefore the next chapters will attempt to separate the impacts in time variant and time invariant impacts.

Figure 16: SEL during the pile driving of EL39 and EL42.

6.1.1Impact of time variant conditions

During a pile installation the penetration depth is increasing steadily. The penetration per blow is mostly highly correlated with the blow energy. Usually the deeper the pile is intruding in the soil, the more blow energy is necessary to get the pile forward. Deviations could be caused by different soil conditions (sediment resistance).

It is also expected that higher blow energy leads to higher sound energy radiated in the water (Gündert, 2014). In the context of a master thesis at *itap GmbH* the impact of blow energy has been investigated. An increase to twice as much of the blow energy leads in average to an increase of 2.5 dB for the pile driving noise measured in several hundred meter distance (Gündert, 2014). This impact was examined at different kinds of foundations
and has been proved by a statistical comparison of the changes in blow energy with the changes in Sound Pressure Level and penetration depth during each installation.

Figure 17 shows the Sound Exposure Level (SEL) and the blow energy (green) for the foundation EL42 on the measuring position $MP1_{FL42}$ in 750 m distance and 2 m hydrophone height. The blue points are the measured Sound Exposure Level (SEL) values. The red line is the rolling mean value of the Sound Exposure Level (SEL) averaged over 50 blows (mean value for every 50 blows) and the grey shaded area is the variance (mean \pm SD) over each 50 blows. Moreover the blow energy is plotted in a green line over the same time interval. This figure illustrated that in the most times when the blow energy is increasing significantly the Sound Exposure Level is increasing too (for example 02:30 AM to 02:45 AM), but there are also time intervals with constant blow energy and increasing Sound Exposure Levels (SEL), for example during 02:00 AM and 02:15 AM. It can be concluded that the blow energy has a significant impact of the radiated sound energy but the blow energy is not the only influencing parameter on the Sound Exposure Level (SEL). For instance the penetration depth has also an influence on the Sound Exposure Level (SEL) especially near the final depth since the Sound Exposure Level is usually constant or decrease slightly with increasing penetration also the blow energy is constant close the final depth (Gündert, 2014). This effect is also visible in Figure 15 for the monopile EL42.

To illustrate the impact of blow energy by reducing other impacts for both piles EL39 and EL42 a shorter time window is chosen during the blow energy is increasing significantly. These time intervals are shown in Figure 18 and Figure 19. Both figures show a high correlation between the blow energy and the Sound Exposure Level (SEL) during the increase of the blow energy. In Figure 18 the increase of blow energy from 250 kJ to 500 kJ leads to an increase of Sound Exposure Level (SEL) to 2.5 dB as theoretically expected (EL39). The increase from 300 kJ to 600 kJ leads to an increase of the Sound Exposure Level (SEL) of about 4 dB. During piling of EL42 the increase of blow energy from 780 kJ to 1,030 kJ leads to an increase of the Sound Exposure Level (SEL) of about 1.2 dB. In this case a doubling of blow energy leads to an increase of Sound Exposure Level (SEL) of 3 dB. During these time windows the impact of blow energy was around 2.5 dB to 4 dB at doubled blow energy. This is a bit higher than expected (Gündert, 2014). However, in mean an increase of about 2 dB to 3 dB can be observed and these differences are within the range of the measurement uncertainty (chapter 4.4). For the investigation of other time variant impacts like the soil conditions more measurements – not only underwater noise – are

needed. Due to this measuring concept it is not possible to make statements about the impact of the soil.

Figure 17: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1_{EL42} at 2 m hydrophone height during the installation. Red: median of the SEL over 50 blows. Grey: median ± SD.

Figure 18: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1_{EL39} at 2 m hydrophone height during a chosen time window. Red: median of the SEL over 50 blows. Grey: median ± SD.

Figure 19: Sound Exposure Level (SEL, blue) and blow energy (green) on MP1_{EL42} at 2 m hydrophone height during a chosen time window. Red: median of the SEL over 50 blows. Grey: median ± SD.

6.1.2Impact of differences in pile geometry and location

The broadband Sound Exposure Level (SEL) for the monopile EL39 were between 2 dB to 3 dB louder than for the monopile EL42 (see Table 10, Table 12 and Figure 16). The fact that the Sound Exposure Level (SEL) on EL39 is higher over the whole installation leads to the assumption that the reason must be a difference which is continuing over the whole installation.

As listed in Table 14 the piles have the same diameter but are different in the length. It is expected that the spectra for Sound Exposure Level (SEL) on the longer pile is shifted to deeper frequencies due to deeper natural resonance frequency (eigen frequency). But a higher radiation of sound energy is theoretically not expected because the longer pile will not lead to a higher radiating surface in water in this case (monopile installation). In Figure 20 the 1/3-octave spectra of the median Sound Exposure Level (SEL₅₀) measured in a distance of 750 m and the results measured in a distance of 5 km are plotted for EL 42 and EL39. There are only slightly changes of attenuation over the distance between the different monopiles for each 1/3 Octave Band (see 1/3-octave spectra in the Appendix A1.1 and A1.2). The frequency bandwidth is nearly similar for both piles, but the spectrum of EL42 is shifted slightly to deeper frequencies as expected.

At the location EL39 the water depth is nearly 1.3 m higher than at EL42. The water depth can have a significant influence on pile driving noise since the water depth can limit the radiated frequency range. For instance in water depth of 10 m the limiting frequency of radiated pile driving sound can be around 100 Hz depending on the sediment resistance. But usually all relevant frequencies for pile driving noise will be radiated in water depth from 20 m onwards. It is rather unlikely that the slightly higher radiating surface of monopile El39 will caused an increase of 2 dB for the SEL because in relation to the whole water depth of around 20 m this is only a small difference of around 6%. Furthermore such an influence was not observed during other pile driving measurements by *itap GmbH* before or reported in the literature. The water depth consequently may not be the main reason for the higher levels.

It is possible that variances in the soil formation affected the sound radiated behavior of the pile. According to information from the client, significantly variances in the soil formation can be excluded. The distance between these piles is approximately 700 m. Slightly variances in the soil formation are only possible for short sections but the Sound Exposure Level (SEL) was higher during the whole pile driving at EL39 (see Figure 16).

Figure 20: 1/3-Octave spectra of the SEL for EL39 (cyan) and EL42 (magenta) at 750 m and approx. 5 km distance.

The higher penetration depth of EL42 could lead to slightly lower Sound Exposure Levels but only at the end of the piling activity. Therefore an obvious reason for the higher Sound Exposure Level (SEL) on foundation EL39 could not be identified. The 1/3-octave spectra in Figure 20 shows over all frequencies greater than 63 Hz the median Sound Exposure Level (SEL₅₀) frequency band levels are higher for EL39 than for EL42. Another significant difference is the "peak" in the 160 Hz 1/3-octave band for EL39 in 750 m distance. If this peak is the impact of a natural resonance from the pile, a similar peak is expected in the spectra for EL42, only in a deeper 1/3-octave band. However, the reason for this peak is not determinable with these measurements. Beside the measurement results at 750 m distance, the results in approximately 5 km distance are also plotted in Figure 20. The peak in the 160 Hz 1/3-octave band over the distance. Instead of a characteristic radiating behavior, it seems to be a modal wave in the water column.

Based on our measurements it was not possible to verify the reason for the higher measured sound pressure levels at $MP1_{EL39}$ than at $MP1_{EL42}$. It must be comment that the measurement uncertainty of underwater noise measurements is around 2 dB and only one sample of each monopile design was measured. For this reasons it cannot be excluded that the measured differences between the two monopiles are mainly caused by measurement uncertainties.

6.1.3 Comparison with underwater noise in other Offshore Wind Farms

Figure 21 shows the median Sound Exposure Level (SEL) measured at different windfarms in the North Sea and the Baltic Sea at a distance of 750 m as a function of diameter. The blue line is the average Sound Exposure Level (SEL) in dependence of the diameter. The gray shaded area shows that most of the median Sound Exposure Levels (SEL) are within a range of \pm 5 dB. The red crosses are the median Sound Exposure Level (SEL) at the locations EL39 and EL42. This figure shows that the measured values for both piles are within the expected range.

Figure 21: Measured Sound Exposure Level (SEL) in different windfarms over the diameter. The red crosses marked the median Sound Exposure Level measured at EL39 and EL42 and gray crosses the median Sound Exposure Level measured in other wind farms.

6.2 Sound propagation

6.2.1 Comparison of the attenuation with calculation models

The purpose of measuring underwater noise during piling was to gather information about the (propagation of) underwater noise generated by pile driving and more specific to gather data for validation of the TNO underwater sound propagation model. The validation of the TNO underwater sound propagation model is not scope of this report. But to predict the sound propagation in water a lot of arbitrarily complex models are available (for example: the *BORA*⁶ project or Thiele & Schellstede, 1980). Figure 22 displays the predicted sound propagations after some common model approaches as a function of distance. The red line shows a sound propagation *TL* = *Source Level* - *15* $log_{10}(d)$ (geometric propagation loss; d – *distance ratio*). This is a good approximation for transmission losses over short distances in

⁶ BORA: Entwicklung eines Berechnungsmodells zur Vorhersage des Unterwasserschalls bei Rammarbeiten zur Gründung von OWEA, founded by PTJ and BMU, project ID 0325421A/B/C.

the North Sea. The green and cyan lines show a frequency dependent sound propagation according to Thiele & Schellstede (1980). This model is a semi-empirical model based on hydro sound measurements during detonations in the North Sea for different areas and weather conditions. The green line shows the common form often used for sound propagation calculations in the German Bight. This model considers a sound propagation at flat sea during wintertime, when the lowest transmission loss is expected. The cyan colored line represents weather conditions in autumn.

For comparison the measured median Sound Exposure Level (SEL₅₀) is also plotted in this figure (blue marks). On position MP4 the pile driving noise was partially audible but it was not possible to determine the Sound Exposure Level (SEL) accurate due to less than 6 dB signal-to-noise ratio, therefore the blue errorbar marks a range for the expected Sound Exposure Level (SEL). The grey shaded area presents the measured ambient noise. The upper border marks the highest measured 5 % exceedance Sound Pressure Level (SPL₀₅) and the lower border presents the lowest measured 95 % exceedance Sound Pressure Level (SPL₉₅). The grey crosses present the median Sound Pressure Level (SPL₅₀) on each measurement position.

If the measurements of pile driving noise are compared with the presented sound propagation models, the levels seem to be overestimated at distances over approximately 5 km. The results suggest that until a distance of at least 30 km the pile driving noise (the median Sound Exposure Level SEL₅₀) was significant higher than the ambient noise (Sound Pressure Level SPL). The ambient noise is at MP1 and MP4 higher than at MP2 and MP3 (around 10 dB). Probably it was due to the vessel noise of the construction process at MP1 and the close public vessel traffic lane in approx. 2 km distance at MP4. It is expected that due to the pile driving noise and the ambient noise in the measurement campagne the Sound Exposure Level (SEL) can be calculated for each blow up to a distance of 30 km to 35 km accurate. For higher distances the Sound Exposure Level (SEL) for pile driving activity is not calculable due to poor signal-to-noise ratio (SNR > 6 dB after WD ISO 18406).

Figure 22: Measured Sound Exposure Level (SEL, blue) as a function of distance. In comparison the predicted propagation for the sound attenuation of three different common approaches are plotted. On position MP4 it was not possible to determine the Sound Exposure Level (SEL) due to a poor signal-to-noise ratio therefore the blue errorbar marks a range for the expected Sound Exposure Level (SEL). The grey shaded area presents the measured ambient noise. The upper border is highest measured 5 % exceedance Sound Pressure Level (SPL₀₅) and the lower border presents the lowest measured 95 % exceedance Sound Pressure Level (SPL₉₅). The grey crosses present the median Sound Pressure Level (SPL) on each measurement position.

6.2.2 Sound propagation in time domain

Beside the attenuation there are more effects in sound propagation. The sound interacts with the boundary layers surface and the seabed several times during the propagation in water (multi reflections). Parts of the sound are reflected and other parts are transmitted, this leads to refraction (Jensen et al., 2000). The refraction is varying with the frequency. Similar to white light in a prism, the frequency dependent refraction is making a lot of colors visible (the colors are analog to the frequency). Besides the frequency dependent

attenuation this leads to different run times for different frequencies between the source and the observing point (e.g. measurement position). Consequently each frequency arrived at a different time to a specified point. This effect is called dispersion. The duration in which all frequencies arrived the specified point is increasing with the distance.

To make this effect visible in Figure 23 the sound pressure (p) as a function of time for one single blow (blow number 1.523 of foundation EL39) is plotted for all measurement positions at 2 m height. The signal duration (τ_{90}) is displayed by the grey shaded area. Beside the decreasing amplitudes of the sound pressure (attenuation) this figure shows the increase of the signal duration (τ_{90}) for growing distances. On the measurement position MP4 in 46,711 km distance the pile driving noise was audible but the signal to noise ratio was to poor, so no Sound Exposure Level (SEL) and with them no signal duration (τ_{90}) could be detected. In Table 15 the signal durations τ_{90} are listed for the measuring positions MP1, MP2 and MP3. As expected, the signal duration is increasing with the distance and shows slightly difference regarding the hydrophone heights.

Position	Distance	Measuring height [m]	Median of τ_{90} [s]	
			EL39	EL42
MP1	750	2	0.060	0.082
		10	0.059	0.075
MP2	approx. 5 km	2	0.131	0.107
		10	0.070	n.v. ⁷
MP3	approx. 13.5 km	2	0.168	0.166
		10	0.178	0.176

Table 15: Median of the signal duration τ_{90} for different measuring positions.

⁷ The hydrophone cable for the pile driving noise measurement was damaged during the 2nd deployment mechanically (technical defect of the used hydrophone).

Figure 23: Sound pressure (p) as a function of time for one single blow. (blow number 1.523 of foundation EL39) for all measurement positions in 2 m height. The signal duration (τ_{90}) is displayed by the grey shaded area.

6.2.3 Sound propagation in frequency domain

The attenuation of sound in water is affected by changes in the geometry (surface and soil conditions) as well as the composition and properties of the medium (e. g. caused by wind and waves). This leads to different propagation speeds and transmission losses for different frequencies. Usually the transmission loss is increasing with frequency (Thiele & Schellstede, 1980). Figure 24 shows the 1/3-octave spectra of the SEL₅₀ measured at the positions MP1, MP2 and MP3 during pile driving of foundation EL39 for both measuring heights. As expected the transmission loss over the distance is higher for high frequencies than for low frequencies. For example is the difference between MP1 and MP2 approx. 10 dB at 32 Hz and > 15 dB for frequencies > 500 Hz. This effect is stronger 2 m above seabed

than 10 m above seabed. This may be caused by changes in the topography and interactions of the sound with the seabed.

Figure 24: SEL₅₀ 1/3-octave for the pile EL39 on the measuring positions MP1, MP2 and MP3 for 2 m and 10 m hydrophone height.

6.3 Conclusions

Impact of different pile designs

The results show as expected a spectra shifted to deeper frequencies for the Sound Exposure Level (SEL) on the longer pile due to deeper natural resonance frequency (eigen frequency). The Sound Exposure Level (SEL) for the shorter monopile with scour protection was between 2 dB to 3 dB louder than for the longer monopile. It was not possible to verify a reason for this difference. Most likely the higher levels were due to the measurement uncertainties.

Attenuation over large distances

When using common propagation models like the geometrical absorption - 15 $log_{10}(d - distance ratio)$ or the semi-empirical attenuation approach of Thiele & Schellstede (1980), the calculated attenuation of the pile driving noise at large distances was much lower than the observed attenuation. The observed attenuation in 2 m above the seabed was slightly higher than in 10 m above the seabed.

Up to a distance of 30 km the median Sound Pressure Level (SPL) was higher than the Sound Pressure Level (SPL) of the ambient noise. Due to a variance in ambient noise this distance in some cases increased to more than 40 km.

Comparison with other windfarms

By comparison the underwater noise of both piles with pilling noise from other Offshore Wind Farms the measured Sound Exposure Levels were within the expected range (measured data from *itap GmbH*). The measured impact of blow energy to the Sound Exposure Level (SEL) was also within the expected range of 2.5 dB to 4 dB by doubling blow energy.

7. Literature

- [1] **TNO report (2011)** Standard for measurement and monitoring of underwater noise, Part II: procedures for measuring underwater noise in connection with offshore wind farm licensing, TNO, Den Haag
- [2] BSH (2011) Messvorschrift für Unterwasserschallmessungen Aktuelle Vorgehensweise mit Anmerkungen. Bericht im Rahmen des Forschungsvorhabens "Ökologische Begleitforschung am Offshore-Testfeldvorhaben alpha ventus zur Evaluierung des Standarduntersuchungskonzeptes des BSH (StUKplus)", Förderkennzeichen 0327689A
- [3] Thiele R, Schellstede G (1980) Standardwerte zur Ausbreitungsdämpfung in der Nordsee. FWG-Bericht 1980-7, Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik.
- [4] Gündert S (2014) Empirische Prognosemodelle für Hydroschallimmissionen zum Schutz des Gehörs und der Gesundheit von Meeressäugern. Masterarbeit an der Universität Oldenburg, Institut für Physik, AG Akustik
- [5] Bellmann MA, Gündert S & Remmers P (2013) Offshore Messkampagne 1 (OMK 1) für das Projekt BORA im Windpark BARD Offshore 1 - Hydroakustische Messungen zur Evaluierung der Wirksamkeit des Schallminderungssystems "Small Bubble Curtain (SBC)" und zur Untersuchung der Schallabstrahlung eines zu rammenden Pfahles - Projektbericht der itap GmbH, Projekt Nr. 1924-12-mb, Förderkennzeichen 0325421A/B/C
- [6] **Jensen et al. (2000)**, Jensen FB, Kupermann WA, Porter MB, Schnmidt H: Computational Ocean Acoustics, Springer-Verlag New York, Inc.
- [7] Medwin H (1975), Speed of Sound in Water for Realistic Paramters, J. Acoust. Soc. Am.
- [8] MacKenzie KV (1981), Nine-term Equation for Sound Speed in the Oceans. J. Acoust. Soc. Am.

Annex 1: Plots of measurement results for each measuring position and each pile

A1.1 Pile Driving Noise for monopile EL39

2322-14-pr: OWF Eneco Luchterduinen - Hydro sound measurements

EL39 MP1 2 m pile driving noise

EL39 MP1 10 m pile driving noise

EL39 MP2 2 m pile driving noise

EL39 MP2 10 m pile driving noise

EL39 MP3 2 m pile driving noise

EL39 MP3 10 m pile driving noise

EL39 MP4 2 m pile driving noise

EL39 MP4 10 m pile driving noise

A1.2 Pile Driving Noise for monopile EL42

EL42 MP1 2 m pile driving noise

EL42 MP1 10 m pile driving noise

EL42 MP2 2 m pile driving noise

EL42 MP3 2 m pile driving noise

EL42 MP3 10 m pile driving noise

EL42 MP4 2 m pile driving noise

EL42 MP4 10 m pile driving noise

A1.3 Ambient Noise for EL39

EL39 MP1 2m ambient noise

EL 39 MP1 10 m ambient noise

EL 39 MP2 2 m ambient noise

EL 39 MP2 10 m ambient noise

EL 39 MP3 2 m ambient noise

EL 39 MP3 10 m ambient noise

EL 39 MP4 2 m ambient noise

EL 39 MP4 10 m ambient noise

A1.4 Ambient Noise for monopile EL42

EL 42 MP1 2 m ambient noise

EL 42 MP1 10 m ambient noise

EL 42 MP2 2 m ambient noise

EL 42 MP2 10 m ambient noise

EL 42 MP3 2 m ambient noise

EL 42 MP3 10 m ambient noise

MP 42 MP4 2 m ambient noise

MP 42 MP4 10 m ambient noise

Annex 2: Measurement Devices

Dila	Tack	Dec	Deurice		Hydrophone	Calibration			
Pite	TASK	P05.	Device	Height	Туре	Serial no.	File	Amplitude	
		MD1	052	2	TC4033	4512022	B0001	100 pC	
		MFI	900	10	TC4033	4711046	B0002	100 pC	
		МПО	051	2	TC4033	2213055	AT001	10 pC	
	Ambiant	MFZ	951	10	TC4033	4711050	AT002	10 pC	
	Amplent	MD2	040	2	B&K 8106	2799818	BM001	10 mV	
		MIPS	949	10	B&K 8106	2931741	BM002	10 mV	
		MD/	0/7	2	B&K 8106	2720288	BE002	10 mV	
EI 20		14	947	10	B&K 8106	Calibration Serial no. File Am 4512022 B0001 1 4711046 B0002 1 2213055 AT001 1 4711050 AT002 1 2799818 BM001 1 2799818 BM002 1 2799818 BM001 1 2931741 BM002 1 2720288 BE002 1 2931739 BE001 1 4512032 BF001 1 3912008 BF002 1 3912010 BW001 1 4711065 BW001 1 1912058 A0002 1 1912050 AZ002 1 1912050 AZ002 1 3912005 BL001 1 3912005 BL002 1 1912068 BD001 1 3311026 BD002 1 2799806 AW002 1	10 mV		
ELS9		MD1	057	2	TC4033	4512032	BF001	100 pC	
		MFI	954	10	TC4033	3912008	BF002	100 pC	
		MDO	052	2	TC4033	3912010	BW001	100 pC	
	Dila driving	MEZ	952	10	TC4033	4711065	BW001	100 pC	
	File univilig	MDO	050	2	TC4033	2213066	A0001	100 pC	
		MIPS	950	10	TC4033	1912058	A0002	100 pC	
		MD/	0/9	2	TC4033	2513015	AZ001	10 pC	
		14	940	10	TC4033	1912050	AZ002	10 pC	
		MD1	059	2	TC4033	2213067	BL001	100 pC	
			900	10	TC4033	3912005	BL002	100 pC	
		MDO	060	2	TC4033	1912068	BD001	10 pC	
	Ambiant	MFZ	900	10	TC4033	3311026	BD002	10 pC	
	Amplent	MD2	057	2	B&K 8106	2931737	AW001	10 mV	
		PIF 3	957	10	B&K 8106	2799806	AW002	10 mV	
		MD/	0/7	2	B&K 8106	2729288	BE002	10 mV	
EI / 2		MP4	947	10	B&K 8106	2931739	BE001	10 mV	
EL42		MD1	055	2	TC4033	2513016	AV001	100 pC	
			900	10	TC4033	4711052	AV002	100 pC	
		MDO	050	2	TC4033	2513024	BC001	100 pC	
	Pilo driving	MEZ	959	10	TC4033	3311018	BC001	100 pC	
	The univing	MD2	056	2	TC4033	2213069	AJ002	100 pC	
		כחויו	900	10	TC4033	3912012	AJ001	100 pC	
		MD/	0/8	2	TC4033	2513015	AZ001	10 pC	
		14	940	10	TC4033	1912050	AZ002	10 pC	

Annex 3: Calibration and certifications

- I. All used hydrophones have a full calibration certificate from the manufacturer. The calibration certificate will be refreshed latest each 30 month by the manufacturer.
- II. Before the offshore operation starts the whole measurement device (including hydrophones, recorders etc.) was checked by an *itap GmbH* employee. Additionally a calibration (pure tone with 160 Hz and fixed amplitude -> "calibration file") was recorded an each device for upcoming calibration task of the measured data.
- III. Before the measurement device was deployed in water the correct functioning of the device was checked by an *itap GmbH* employee by using a "custom-made" testingbox.
- IV. After the recovery of the measurement device the correct functioning was checked again by an itap employee.

Device	Producer	Important technical data/number of entities
Pressure chamber	Itap GmbH	80 to 160 Hz, 140 – 155 dB re 1µPa adjustable
Microphone-calibrator 4231	Bruel & Kjær	
Microphone 4189 and pre- amplifier 2671 as reference in pressure chamber	Bruel & Kjær	
Signal Analyzer 35670a	Hewlett- Packard	

The Equipment used for calibration is listed in the table below.

Itap GmbH is a notified measuring agency according to §26 of the BImSchG (Federal Control of Pollution Act) and has an accredited quality management system according to DIN EN ISO 17025 for emission and immission (pollution) measurements of sounds and vibrations since November 28th, 2012 (accreditation in accordance with DAKKs – German accreditation body - for immission (pollution) protection module sounds and vibrations, as well as noise in the workplace and acoustical material testing in the reverberation room).

Annex 5: Observed weather conditions

23 september 2014 Observed Weather Conditions 00:01 – 24:00

	Weather Today																	
		10m			50m Wind Wave			Swell				Wave		10m	Lowest	Air		
UTC		Dir	Spd	Gust	Risk	Spd	Gust	Hgt	Per	Dir	Hgt	Per	Hsig	Max	Risk			
010			(kts)	(kts)	(kts)	(kts)	(kts)	(m)	(sec)		(m)	(sec)	(m)	(m)	(m)		(ft)	(degC)
	Tuesday, 23 Sep 2014 - Luchterduinen 52º24'N 004º10'E																	
12	NSW	SW	9	13	-	10	14	0.6	3	N	0.7	6	0.9	1.5	-	good	2000	16
15	NSW	WSW	11	15	-	12	16	0.8	4	N	0.7	6	1.1	1.8	1.6	good	3500	16
18	NSW	WSW	10	15	-	11	15	0.7	3	NW	0.7	5	1.0	1.7	1.5	good	3500	16
21	NSW	SW	13	17	-	14	19	0.9	4	NW	0.6	5	1.1	1.8	1.6	good	3500	17
					V	Vednes	day, 24	Sep 20	14 - Lu	chterdu	inen 52	2°24'N 0	04º10'E					
00	NSW	SW	14	19	-	16	21	1.1	5	NW	0.5	5	1.2	2.0	1.7	good	3500	17

24 September 2014 Observed Weather Conditions 00:01 – 24:00

	Weather Today																	
Time	WX			Wir	nds						Wa		Vis	Clouds	Temp			
			10)m		50	m	Wind	Wave		Swell			Wave		10m	Lowest	Air
UTC		Dir	Spd (kts)	Gust (kts)	Risk (kts)	Spd (kts)	Gust (kts)	Hgt (m)	Per (sec)	Dir	Hgt (m)	Per (sec)	Hsig (m)	Max (m)	Risk (m)		(ft)	(degC)
	Wednesday, 24 Sep 2014 - Luchterduinen 52°24 N 004°10'E																	
00	NSW	SW	16	22	-	18	24	0.9	4	NW	0.5	6	1.0	1.7	1.5	good	3500	17
03	NSW	SW	17	23	-	19	25	1.1	5	NW	0.5	5	1.2	2.0	1.7	good	3500	16
06	SHRA	WSW	20	26	23	21	28	1.2	5	W	0.5	5	1.3	2.2	1.8	md/gd	3500	16
09	SHRA	WSW	20	26	23	22	29	1.4	5	NW	0.5	6	1.5	2.5	2.0	md/gd	1000	15
12	TS	W	17	23	30	19	25	0.8	4	W	1.0	5	1.3	2.2	1.8	md/gd	1000	15
15	TS	WNW	19	25	31	20	26	1.0	4	W	0.8	5	1.3	2.2	1.8	md/gd	1000	15
18	SHRA	NW	19	25	23	21	27	1.0	4	WSW	0.6	5	1.2	2.0	1.7	md/gd	1000	15
21	SHRA	NW	21	27	23	23	30	1.5	5	W	0.6	6	1.6	2.7	2.1	md/gd	2000	15
						Thursd	ay, 25 \$	Sep 201	4 - Luc	hterdui	nen 52º	24'N 00	4º10'E					
00	NSW	NW	19	25	-	21	27	1.4	5	WNW	0.7	6	1.6	2.7	2.1	good	2000	16

25 September 2014 Observed Weather Conditions 00:01 – 24:00

	weather Today																	
Time	WX			Wir	nds						Wa		Vis	Clouds	Temp			
			10)m		50	m	Wind	Wave		Swell			Wave		10m	Lowest	Air
LITC		Dir	Spd	Gust	Risk	Spd	Gust	Hgt	Per	Dir	Hgt	Per	Hsig	Max	Risk			
010			(kts)	(kts)	(kts)	(kts)	(kts)	(m)	(sec)		(m)	(sec)	(m)	(m)	(m)		(ft)	(degC)
	Thursday, 25 Sep 2014 - Luchterduinen 52°24'N 004°10'E																	
00	NSW	NW	18	24	-	20	26	1.5	5	W	0.8	6	1.7	2.8	2.2	good	2000	15
03	NSW	NW	16	22	-	18	23	1.2	5	NW	1.0	6	1.6	2.7	2.1	good	2000	15
06	NSW	WNW	13	18	-	14	20	0.6	3	NW	1.2	6	1.3	2.2	1.8	good	3500	15
09	NSW	WSW	17	23	-	19	25	0.7	4	NW	0.9	6	1.1	1.8	1.6	good	2000	15
12	NSW	WSW	19	25	-	20	27	1.1	4	NW	0.8	6	1.4	2.3	1.9	good	2000	15
15	NSW	WSW	20	26	22	22	28	1.1	4	NW	0.8	6	1.4	2.3	1.9	good	NLC	16
18	NSW	WSW	19	25	-	21	28	1.1	4	NW	0.7	6	1.3	2.2	1.8	good	2000	17
21	NSW	WSW	18	24	-	21	27	1.2	4	NW	0.6	6	1.3	2.2	1.8	good	3500	18
						Frida	y, 26 Se	p 2014	- Lucht	erduine	en 52º24	4'N 004	₽10'E					
00	NSW	WSW	17	23	-	19	25	1.0	4	WNW	0.7	6	1.2	2.0	1.7	good	1000	18

26 september 2014 Observed Weather Conditions 00:01 – 24:00

	Weather Today																	
Time	WX			Wi	nds						Wa	Vis	Clouds	Temp				
			10)m		50)m	Wind	Wave		Swell		Wave			10m	Lowest	Air
UTC		Dir	Spd (kts)	Gust (kts)	Risk (kts)	Spd (kts)	Gust (kts)	Hgt (m)	Per (sec)	Dir	Hgt (m)	Per (sec)	Hsig (m)	Max (m)	Risk (m)		(ft)	(degC)
	Friday, 26 Sep 2014 - Luchterduinen 52º24'N 004º10'E																	
00	DZ	WSW	18	24	-	20	26	0.9	4	W	0.7	5	1.1	1.8	1.6	md/gd	1000	18
03	DZ	WSW	18	24	-	20	26	1.0	4	WNW	0.5	5	1.1	1.8	1.6	md/gd	1000	17
06	DZ	WSW	19	25	-	21	27	1.2	5	WNW	0.4	5	1.3	2.2	1.8	md/gd	1000	17
09	DZ	WSW	19	25	-	21	27	1.4	5	SW	0.5	6	1.5	2.5	2.0	md/gd	1000	17
12	NSW	WSW	17	22	-	19	25	1.2	4	SW	0.7	6	1.4	2.3	1.9	good	1000	17
15	DZ	WNW	14	19	-	15	21	0.8	4	WSW	0.9	5	1.2	2.0	1.7	md/gd	1000	17
18	NSW	WNW	11	15	-	12	16	0.4	3	W	1.0	5	1.1	1.8	1.6	good	2000	17
21	NSW	NW	9	13	-	10	14	0.3	2	WNW	0.9	5	0.9	1.5	-	good	1000	17