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Summary 

Marine mammals rely on underwater sound for social interaction, communication, navigation, predator 

avoidance and foraging. Pile-driving during the construction of offshore windfarms produces high 

energy, broad spectrum sound that can be detected by marine mammals, causing injury or changes in 

behaviour that could reduce body condition and reproductive potential. The growth of offshore 

windfarm industry in the North Sea is cause for concern over impacts on marine mammals. 

Grey seals (Halichoerus grypus) are abundant, highly mobile predators in the North Sea. They are 

potentially capable of detecting pile-driving activity at distances beyond 100 km, but their responses 

to anthropogenic sounds are still largely unknown. 

In the Netherlands, grey seals haul-out in the Wadden Sea in the north, and the Delta region in the 

south, and forage in the adjacent North Sea. To examine if movement and behaviour could be 

influenced by pile-driving, we tracked grey seals during the construction of the Luchterduinen 

windfarm in 2014 and Gemini windfarm in 2015. 

GSM-GPS tracking devices were attached to 20 grey seals in 2014 and 16 in 2015, at haul-out sites 

from where the seals were most likely to move near the respective windfarms. 20 seals provided 

location data during the individual pile-driving events, and were within 70 km of the windfarm 

construction site. This resulted in 175 exposure events that could be used for further analysis. A 

number of events were near pile-driving (i.e. 36 exposures were within 30 km of pile-driving.) 

Reactions of the grey seals to the pile driving were diverse, and included: altered surfacing or diving 

behaviour, and changes in swim direction including swimming away from the source, heading into 

shore or travelling perpendicular to the incoming sound, or coming to a halt. Also, in some cases no 

apparent changes in their diving behaviour or movement was observed. Of the different behavioural 

changes observed a decline in descent speed occurred most frequent, which suggests a transition from 

foraging (diving to the bottom), to more horizontal movement. Our analysis showed that these 

changes in behaviour were on average larger and occurred more frequent at smaller distances from 

the pile driving events, and such changes were statistically significantly different at least up to 36km. 

For example, up to 36km, the exposed seals showed a decline in descent speed in 39 of the 58 

exposures. 

On 12 occasions, seals displayed a significant decline in the descent speed at larger distances, 

sometimes well beyond 36km. For example, during one instance, a grey seal at 48 km from pile-

driving drastically reduced its descent speed and average dive depth when pile-driving started, and 

immediately after pile-driving ceased, continued to pre-piling behaviour. For individual exposures, 

however, it cannot be excluded with certainty that the change in behaviour incidentally coincides with 

the start of pile driving.  

In addition to changes in dive behaviour, also changes in movement were recorded. There was 

evidence that on average grey seals within 33 km were more likely to swim away from the pile-

driving. This was only the case for Gemini, where pile driving intensity was higher and GPS location 

estimates were more frequent than Luchterduinen. When the track of individual seals revealed a 

change in direction, this was not always away from pile-driving. This suggests that seals might not 

always be able locate the location of pile-driving accurately. 

Approximately half of the tracked seals (i.e. 16 of 36) were absent from the pile-driving area all 

together, the small sample size and constraints on interpretation of the data prevented us from 

proving long-term avoidance as a result of pile-driving. Seals that did not visit the area may have 

done so to avoid pile-driving activity or simply be drawn to other areas. In some cases, seals exposed 

to pile-driving at close range, even at distances shorter than 30 km, returned to the same area on 

subsequent trips. This suggests that some seals had an incentive to go to these areas, which was 

stronger than the potential deterring effect of the pile-driving.  

This study defines a behavioural response in diving that can be linked to foraging, thus being an 

important consideration for understanding impacts of underwater sound on grey seals. The 

behavioural responses are very diverse and more detailed studies are needed to clarify these. The use 
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of accelerometers would enable a more detailed description of the seals’ movement underwater 

including prey capture attempts, and therefore provide for a step forward in studying the influence of 

various anthropogenic sounds on seals. Also, the use of hierarchical state-space models would allow a 

more robust classification of the different behavioural states (e.g. transiting, searching, foraging, 

resting, etc.) and how sound exposure level influences the switching probability between these 

behavioural states, taking into account a multitude of behavioural response variables.  
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Samenvatting 

Zeezoogdieren zijn sterk afhankelijk van onderwatergeluid voor sociaal contact, navigatie, ontwijken 

van predatoren en foerageren. Voor de aanleg van windparken op zee wordt geheid en het geluid wat 

hierbij vrijkomt kan vaak op tientallen kilometers worden waargenomen door zeezoogdieren. Dit kan 

leiden dit verandering in hun gedrag, en kan mogelijk leiden tot verminderde conditie van het dier en 

zelfs de hele populatie.  

Ondanks dat de grijze zeehond (Halichoerus grypus) een veel voorkomend roofdier in de Noordzee is, 

zijn er nog weinig gegevens over hoe ze in het wild reageren op onderwatergeluid. In Nederland 

gebruiken grijze zeehonden ligplaatsen in de Waddenzee in het noorden, en de Delta in het zuiden, en 

foerageren met name in de aangrenzende Noordzee. Om te onderzoeken hoe hun beweging en gedrag 

beïnvloed kan worden door heien, werden grijze zeehonden uitgerust met zenders gedurende de 

aanleg van Luchterduinen windpark Luchterduinen in 2014 en Gemini windpark in 2015. 

In totaal werden 20 GSM-GPS zenders aangebracht op grijze zeehonden in 2014, en 16 zenders in 

2015. Van de in totaal 36 grijze zeehonden die een GSM-GPS zender hadden, kwamen er 20 

zeehonden binnen een straal van 70 km van een hei-sessie, wat resulteerde in 175 blootstellingen. 

Een relatief klein deel van die blootstellingen (36) waren in de nabijheid (<30km) van het heien.   

Waargenomen gedragsveranderingen van grijze zeehonden bij aanvang van het heien waren divers, 

en omvatten: een verandering van hun gedrag aan het oppervlak of gedurende het duiken, en een 

verandering in zwemrichting of snelheid, zoals het wegzwemmen van het hei-geluid. Ook werd 

regelmatig ogenschijnlijk geen gedragsverandering waargenomen tijdens het heien. De 

gedragsverandering die het vaakst werd waargenomen was een vermindering in de verticale 

duiksnelheid, wat een transitie suggereert van foerageren (recht naar beneden duiken) naar 

wegzwemmen (meer horizontale beweging). De statistische analyse liet zien dat een degelijke 

gedragsverandering duidelijker en gemiddeld vaker werd waargenomen op kleinere afstanden van het 

heien, en dergelijke verandering was statistisch significant tot ongeveer 36km.  

In een tiental gevallen liet een gezenderde zeehond een afname in duiksnelheid zien op grotere 

afstand van het heien. Bijvoorbeeld, gedurende een hei-sessie liet een grijze zeehond die zich 48 km 

van het heien bevond een sterke reductie in duiksnelheid en gemiddelde duikdiepte zien bij aanvang 

van heien, en direct nadat het heien was gestopt, vertoonde de zeehond duikgedrag wat vergelijkbaar 

was met dat van voor het heien. Echter, voor individuele bloostellingen kan er niet met 100% 

zekerheid gesteld worden of gedragsveranderingen het gevolg zijn van het heien of andere vormen 

van verstoring 

Naast veranderingen in duikgedrag, waren ook veranderingen in beweging zichtbaar. Er waren sterke 

aanwijzingen dat gemiddeld grijze zeehonden tot op 33km een grotere kans hadden van het heien 

weg te zwemmen. Dit was alleen zichtbaar voor Gemini windpark. Dit zou kunnen komen doordat de 

hei-intensiteit voor dat park hoger was, of omdat de gemiddelde tijdsinterval tussen de GPS locaties 

kleiner was vergeleken met Luchterduinen, en veranderingen in beweging daardoor makkelijker te 

registreren waren. Hoewel er veranderingen in zwemrichting werden waargenomen, waren deze niet 

altijd weg van het heien. Dit zou erop kunnen wijzen dat zeehonden misschien niet altijd in staat zijn 

precies te bepalen waar het hei-geluid vandaan komt.  

Hoewel ongeveer de helft van de gezenderde zeehonden helemaal niet in de buurt van het heien 

kwamen, was de steekproef te klein en proefopzet ongeschikt om lange termijn vermijding van het 

heien te bepalen. Namelijk, een reden dat een zeehond niet in het buurt komt van de hei-locatie kan 

te maken hebben met het ontwijken van heien, of simpelweg omdat het een voorkeur heeft voor 

andere gebieden. Sommige zeehonden kwamen herhaaldelijk terug om te foerageren in het gebied 

nabij (<30km) de hei-locatie. Dit suggereert dat voor deze dieren de wens om in het gebied te 

foerageren groter was dan de eventuele nadelige effecten van het heien. 

Deze studie heeft gekeken naar een verandering in duikgedrag wat gerelateerd is aan foerageren, en 

is daarmee een belangrijke graadmeter voor het begrijpen van het effect van onderwatergeluid op 

grijze zeehonden. Echter, de waargenomen gedragsveranderingen zijn heel divers, en om die reden 

zijn meer gedetailleerde studies nodig om deze variatie te begrijpen. Een oplossing is het gebruik van 
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versnellingsmeters die een meer gedetailleerde beschrijving van het gedrag van zeehonden 

onderwater kunnen opleveren. Met dergelijke versnellingsmeters kan bijvoorbeeld gekeken wanneer 

en hoe zeehonden hun prooi vangen, maar ook preciezer hoe zeehonden wegzwemmen van 

verstoring. Een andere oplossing is het gebruik van zogenaamde Hidden Markov Models die in staat 

zijn om beweging en duikgedrag te classificeren in verschillende typen gedragingen (zoals zwemmen, 

zoeken naar voedsel, rusten, etc.). Tevens kunnen dergelijke modellen onderzoeken hoe blootstelling 

aan geluid leidt tot een verandering in gedrag, zoals het stoppen met foerageren en wegzwemmen. 

Dit brengt het onderzoek weer een stap dichterbij het begrijpen wat de consequentie van menselijke 

verstoring is op zeezoogdieren. 
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1 Introduction 

Grey seals (Halichoerus grypus) are among the most abundant marine mammals in the North Sea, 

along with harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) (Reijnders & 

Lankester 1990). While several studies have studied the response of porpoises to anthropogenic 

underwater sound in the wild (Carstensen et al. 2006, Lucke et al. 2009, Tougaard et al. 2009, Hastie 

et al. 2015), relatively little is known on its effect on wild seals, especially grey seals. One prevalent 

source for underwater sound in the North Sea is pile-driving for offshore windfarm installation (Breton 

& Moe 2009). Prior to 2017, almost 2000 offshore wind turbines were installed in the North Sea and it 

is planned that by 2020, there will be >10,000 (information source 

http://www.4coffshore.com/offshorewind/, last accessed Jan 2018). Pile-driving of each turbine tower 

(monopile) into the sediment produces a series of high-impact, broad-band, pulses of noise at 

approximately one second intervals over 1-3 hours (Bailey et al. 2010). Madsen et al. (2006) suggest 

that pile-driving can be detected by marine mammals over hundreds of kilometres. However, 

immediate and longer-term responses to such sounds or impacts on the animals are still largely 

unknown. Some responses of harbour porpoise to pile-driving have been documented (Carstensen et 

al. 2006, Lucke et al. 2007, Lucke et al. 2009, Tougaard et al. 2009, Kastelein et al. 2012, Teilmann & 

Carstensen 2012, Dähne et al. 2013), but there is little data on harbour seals (Hastie et al. 2015, 

Russell et al. 2016) and virtually none available for grey seals. This study addresses the lack of such 

data by investigating the movement responses of individual grey seals tracked during the construction 

of two offshore windfarms in Dutch waters. 

Since the 1970s, there has been increasing interest in how anthropogenic underwater sounds, 

including shipping noise, active sonar, seismic surveys, construction activity, explosions, and acoustic 

deterrents may alter the behaviour and survival of marine mammals (Payne & Webb 1971, Myrberg 

1978, Southall et al. 2007, Richardson et al. 2013). Marine mammals rely on sound production and 

detection for communication, navigation, predator avoidance and foraging (Tyack 1997, Noad et al. 

2000, Curé et al. 2013). Human sounds may mask their abilities to detect important sounds (Erbe et 

al. 2016), produce aversion responses that could restrict behavioural and movement options affecting 

reproduction and survival, or cause direct injury and even death (Ketten 1995, D'Amico et al. 2009, 

Kight & Swaddle 2011).  

Restrictions on industrial underwater sound in the North Sea that aim to protect marine mammals 

have primarily focussed on minimising impacts on harbour porpoises (Teilmann & Carstensen 2012, 

Kastelein et al. 2013c, Thompson et al. 2013). Harbour porpoises are the most abundant species 

widely distributed, migratory and reliant on their echolocation to survive (Hammond et al. 2002, 

Carlström 2005). They are also highly responsive to anthropogenic sounds (Lucke et al. 2007, Lucke 

et al. 2009, Tougaard et al. 2009, Kastelein et al. 2012). Harbour porpoises detect and readily flee 

from the near vicinity of pile-driving activities (Carstensen et al. 2006, Tougaard et al. 2009, Dähne et 

al. 2013). Hearing is also important for seals as demonstrated by their acute underwater hearing 

(Bodson et al. 2006) and they rely on sound recognition to detect danger (Deecke et al. 2002), and 

potentially food, or to recognise conspecifics (Graham et al. 2009). They may therefore function sub-

optimally if their hearing ability is masked or damaged. This could be an issue specifically in the case 

of pile-driving as seals hear in the range 0.1 to ~69 kHz, with maximum sensitivity at around 1 kHz 

(Kastelein et al. 2009, Stansbury et al. 2014, Cunningham & Reichmuth 2016), coinciding with sounds 

produced by pile-driving. These sounds peak at 0.5 kHz close to the source and 0.5 to 1 kHz at 

greater distance (de Jong et al. 2013). By comparison, harbour porpoises hear best in the range 16 to 

140 kHz, with maximum sensitivity between 100 and 140 kHz (Kastelein et al. 2002), well above this 

peak. One field study provided pulsed noise at a frequency of ~1 kHz that displaced harbour seals 

while harbour porpoise seemed unaffected (Götz & Janik 2015).  

Although seals are likely to detect pile-driving over great distances, some individuals may endure 

potential harm from the sound, to pursue other activities, such as accessing haul-out sites and 

feeding. Recently, harbour seals in the UK were reported to remain in the vicinity of pile-driving 

despite receiving multiple exposures to sound levels that were sufficient to cause shifts in their 

hearing thresholds (Hastie et al. 2015), still the overall harbour seal density was lower during pile-

driving up to 40 km away (Russell et al. 2016).  

http://www.4coffshore.com/offshorewind/
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Responses by seals to potential dangers are likely to vary greatly, depending on individual histories, 

size, sex, condition, and hearing ability (Lucke et al. 2016). This was observed in grey seals and 

harbour seals (Götz & Janik 2011, Kastelein et al. 2013b). The latter laboratory study provided unique 

information on behavioural variability by seals in response to potentially damaging sound levels. Due 

to a transducer malfunction, two captive harbour seals were exposed to a higher than anticipated 

sound source for 60 min: the mean received sound pressure level (SPL) was 163 dB re 1µPa. One of 

the seals avoided exposure to this sound by hauling out; the other seal chose to remain in the water 

where it received a sound exposure level (SEL) of 199 dB re 1µPa2s, causing severe TTS (44 dB, 12-

16 min. post exposure). As survival might depend on it, wild seals may be more likely than a trained, 

captive seal, to tolerate potentially damaging levels of anthropogenic sound. A further motivation for 

the seals to tolerate potentially harmful sounds is that the sounds may mask their approach from 

prey, thus enhancing feeding opportunities (Chan et al. 2010). 

As part of the environmental monitoring for windfarm construction in Dutch waters, we investigated 

grey seal movement and behaviour during periods of pile-driving for two windfarms: Luchterduinen 

and Gemini. Luchterduinen was constructed in water depths of 18-24 m, 23 km off the central Dutch 

coast in 2014, and Gemini was constructed in water depths of 32-34 m, 50 km north of the Dutch 

Wadden Sea, in 2015. The hypothesis is that seals will swim away from pile-driving and change their 

diving behaviour. When foraging, grey seals will spend a large proportion of time near the bottom (80-

90%), and we expect this to be reduced when exposed to pile-driving. The probability of change is 

more likely to occur at smaller distances and higher SEL. The aim here is to primarily study changes in 

behaviour during pile driving, not to estimate PTS or TTS. Results provide insights specifically into 

impacts of pile-driving on grey seals, but in general, also shed light on potential impacts of 

anthropogenic underwater sound on pinnipeds.  
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2 Materials & Methods 

2.1 Pile driving 

Pile-driving for Luchterduinen was conducted in the period 31 July to 16 October 2014. In total 44 

monopiles (each 4.5 m diameter) were pile-driven into the seabed: 43 for wind turbines and one for 

an offshore high voltage station (OHVS) (Figure 1, upper). Pile-driving for Gemini was conducted 

between 1 July and  October 17, 2015, for 150 turbine towers (4.5 m diameter) and eight monopiles 

to support two OHVSs (Figure 1, lower).  

Activities leading to each pile-driving event also produced underwater sound that may have been 

detected by seals. Before each monopile was pile-driven, the vessel was positioned using active sonar, 

jacked-up, and an acoustic harbour porpoise deterrent was switched on (Faunaguard, SEAMARCO Ltd, 

Netherlands). The porpoise deterrent produced sounds at ultra-sonic frequencies (60-150 kHz) 

anticipated to be at, or just above the seals top hearing range. The monopile was lowered to the sea 

floor and a pile-driving hammer was positioned over it.  

Once pile-driving commenced, hammering was not continuous. It commenced with a ‘soft-start’, i.e. 

no or light (~200 kJ) power, to ensure the monopile seated correctly and penetrated the substrate in 

a controlled manner. Initial hammering consisted of one or several blows followed by pauses of up to 

several minutes for observation/adjustment. As the monopile penetrated further, the frequency, 

duration and power of hammering increased. In later stages, hammering was at a rate of 40-50 blows 

per minute for 30 minutes or longer at energy levels >700 kJ.  Compared to Luchterduinen different 

pile-driving hammers were used for Gemini, with higher pile-driving energy (see Figure 1). 

After a monopile reached its required depth, the acoustic deterrent was switched off. The vessel 

installed fixtures to the monopile, then jacked-down and moved to the next location. At 

Luchterduinen, one vessel performed all the pile-driving leaving periods of 2-3 days without any pile-

driving while the vessel restocked. At Gemini, two vessels operated so time-gaps between pile-driving 

events were shorter and occasionally two monopiles were being installed simultaneously (see Figure 

1). Often pile-driving ceased during winds above 15 m/s. 
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Figure 1. Pile-driving activities (vertical red lines) for Luchterduinen in 2014 (upper figure) 

and Gemini in 2015 (lower figure). 

 

2.1.1 Underwater sound levels produced by pile-driving 

The Aquarius 1.0 sound propagation model (Binnerts & de Jong 2016) was used to estimate the single 

strike Sound Exposure Level (SELss in dB re 1 μPa2s.) for the Luchterduinen windfarm only. Details 
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are described in (Binnerts & de Jong 2016). The source level (SLE) was estimated based on the 

estimated propagation loss and sound measurements for the Princes Amalia Wind Park (PAWP, de 

Jong & Ainslie 2012). The model was used to make SELss predictions (unweighted and Mpw weighted, 

Southall et al. 2007) for five representative monopile locations in the Luchterduinen windfarm (E01, 

E06, E21, E36 and E43), assuming a piling energy of 1000 kJ, for eight wind speeds (0, 2, 4, 6, 8, 10, 

12 and 14 m/s) and two receiver depths: 1 m above the bottom and 1 m below the surface. At 

distances beyond 15 km, the SELss were considered less precise due to the less well-known effects of 

wind (determining wave action) on sound propagation. 

For the analysis in the present study, each pile-driving location was allocated to the nearest of the five 

pile-driving location for which SELss estimates were available. For each grey seal exposed to pile-

driving, the concurrent wind speed data (measured at the PAWP wind turbine WTG59 or, if 

unavailable, WTG60) were used to select the relevant map of SELss predictions. For each exposure 

with known GPS location, the local estimate of SELss was extracted. Finally, assuming a fixed 

percentage of blow energy will be transferred to sound energy, the SELss could be rescaled for 

different pile-driving energy levels (BE in kJ) by adding 10log10(BE kJ/1000kJ) dB to the provided SELSS 

estimate for 1000kJ. 

For Gemini, sound measurements were made (Remmers & Bellmann 2016), and the data were used to 

validate the Aquarius 1.0 model. Maps of SEL estimated for the different monopiles and wind speeds 

are currently unavailable for the Gemini study, and hence the changes in grey seal behaviour in 

response to pile-driving for Gemini, were only related to distance to the pile-driving site. 

 

2.2 Seal movement 

2.2.1 Field deployments 

Seals were tracked using GPS-GSM transmitters (weight 330 g in air, volume 150 cm3) from the Sea 

Mammal Research Unit (SMRU, Scottish Oceans Institute, Scotland). These provide Fastloc® GPS 

location-determinations, dive depth, sea temperature and haul-out time measurements. Recovery of 

data was through the GSM mobile-phone network. Up to 3-months of data were stored in the memory 

of the transmitters and could be relayed via the GSM mobile-phone system when the seal hauled out 

within range of a network. The 3-month data storage facility was required in case seals remained for 

extended periods at sea or at haul-outs that were not covered by the GSM network. 

The Fastloc® GPS in the transmitter attempted to determine a location after a pre-set interval and 

when the antenna was next exposed. To maintain battery life throughout an anticipated sample period 

of 10 months, the sample interval was set at 15-minutes. Seal location and dive data were 

transmitted from the tracking devices via the GSM-network to land-based computers (at SMRU, 

Scotland) and could be downloaded over the internet as Access files.  

To get overlap with the Luchterduinen site, tracker deployment sites were selected to the north and 

south of the Dutch coastal zone. In the north, the deployment site was in the inlet of the Eierlandse 

Gat, between the islands of Texel and Vlieland (53.20°N, 4.91°E) (Figure 3). In the Delta region, grey 

seals were caught at the Aardappelbult sandbar south of Rotterdam (51.79°N, 3.78°E). For the Gemini 

site, areas chosen for seal captures were near the island of Ameland, Pinkegat to the east (54.44°N, 

5.94°E) and the Blauwe Balg to the west (53.43°N, 5.60°E).  

Field trips to deploy the transmitters were conducted in April 2014 for Luchterduinen, and April and 

September 2015 for Gemini. Seals were captured at low tide adjacent to sandbars using a purpose-

built seine-net of approximately 100 m length and 8-m drop. Healthy individuals that had completed 

their moult were selected to carry transmitters. We attempted to get an even spread of males to 

females and sub adults to adults (adult nose-to-tail lengths were >140 cm females and >160 cm 

males). Selected seals were strapped into purpose-built cradles and had the transmitter glued 

(Permacol 2240 epoxy resin, Permacol BV, Netherlands) to their pelage at the mid-dorsal point behind 

the neck. While the glue set (approximately 10-15 minutes), the seals were sexed and measured 

(standard length and weight). Once the glue had set, each seal was released and, upon release all 

proceeded directly to the water. All seals were released within 90 min. of capture. 
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All required permits to enter protected areas and handle animals were obtained. These included 

permits under the Dutch Nature Protection Act (Natuurbeschermings Wet) from the provinces of 

Zeeland and North-Holland, a permit under the Flora and Fauna Act (Flora en Fauna Wet) from the 

Dutch government and protocols approved by an animal ethics committee (Dier Ethische Commissie, 

DEC) of the Royal Netherlands Academy of Science (Koninklijke Nederlandse Academie voor 

Wetenschappen, KNAW). 

 

2.2.2 Processing tracking data 

Location determinations and dive data were accessed via the internet from a data storage facility at 

SMRU, UK. For the dive data, several descriptive variables were calculated. The dive depth was 

recorded at 1%, 2.5%, 5%, 10%, ....., 90%, 95%, 97.5% and 99% of the duration of each dive. The 

dive starts when the depth sensor records a depth below 1.5m. The initial descent speed of the dive 

was estimated as the change in dive depth between the 1% and 2.5% quantile time-point of dive, 

divided by the corresponding dive time between those two points. The estimated speed between the 

start of the dive (1.5m depth) and the 1% quantile point could not be used, because the precise start 

time of the dive was recorded at 4 second resolution, which was often too imprecise, particularly for 

the shorter dives. The variable ‘mean to maximum dive depth ratio’ was calculated as the average 

dive depth of each dive, divided by the local water depth. Depth estimates were extracted from the 

harmonized EMODnet Digital Terrain Model (DTM, see http://www.emodnet-hydrography.eu/), which 

is based on regional DTMs, and gaps with no data coverage were completed by integrating the GEBCO 

Digital Bathymetry. If the dive depth exceeded the local depth, the maximum dive depth was used as 

local water depth instead. The ‘speed to maximum dive depth’ was calculated as depth of the first dive 

point beyond 90% of the maximum dive depth, divided by the time required to reach that depth.  

GPS location estimates could in theory be obtained every 10 minutes, but in practice there were 

occasional long time gaps of several hours between the GPS locations. To estimate the seal position at 

each dive and other (regular) points in time, a continuous time correlated random walk model was 

fitted to entire track of each individual seal (CTCRW, function crawlWrap in R-package momentuHMM 

(Johnson 2017, McClintock & Michelot 2017)). This model was subsequently used to predict for each 

dive in between the GPS location fixes the seals’ location (x and y-coordinates in UTM31N projection) 

and uncertainty of the location . Both the GPS and dive data were allocated to a specific period, in 

respect to the pile driving: 4 h to 5 min. prior to pile-driving (period 1), 5 to 0 min. prior to pile 

driving (period 2), during pile driving (period 3) and 0 to 4 h after pile driving (period 4). The period 2 

(i.e. 5 to 0 min. prior to pile driving) was included because initial inspection of the dive data suggested 

that seals sometimes responded a few minutes to seconds prior to pile-driving, and it was assumed 

that this was due to some other pile-driving related sound which was not included in the pile driving 

data. Depending on the research question and corresponding analysis, specific data from the 

respective periods were selected. 

All analyses were carried out in UTM 31N projection (EPSG code = 25831) except for the SELss maps, 

which were in National Rijksdriehoek projection. The estimated location of the seal during an exposure 

was based on the CTCRW location estimate of the last dive prior to pile-driving, or when not available, 

the location of the first dive after the start of pile-driving.  

2.3 Seal responses to pile-driving – statistical analysis 

2.3.1 Change in diving behaviour 

When foraging, grey seals often dive to the sea floor, where they spend 80-90% of the total dive time. 

This type of foraging behaviour will lead to U-shaped dive, with a relatively long period of near-

constant depth. When the seal was exposed to a loud sound, we expected this pattern to be disrupted. 

For example, seals may stop diving to feed on the bottom and attempt to flee from the sound source, 

leading to slower vertical descent and ascent rates, and also a lower percentage of time at maximum 

depth (i.e. more V-shaped dive). Even if they continue to forage, the disturbance and stress response 

may still lead to an earlier termination of the dive (i.e. shorter dives).  
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Since it was unknown a-priori which variable was likely to be most important, we explored three dive-

related variables, and tested whether any of these variables changed when the seal was exposed to 

pile-driving: 

1. Descent speed (𝑣𝑑𝑒𝑠𝑐𝑒𝑛𝑡 in m/s): The vertical speed measured between the 1% quantile of the 

dive and the point where the seal reached 80% of the maximum dive depth. 

2. Fraction of time near the bottom (𝑝𝑏𝑜𝑡𝑡𝑜𝑚): The fraction of each dive the seal spent near the 

bottom (here defined as >80% of local depth). 

3. Average dive depth (𝑑𝜇/𝑚𝑎𝑥): The average dive depth (taking the surface duration with depth 

=0m, into account) expressed as fraction of the local depth. 

For each grey seal present within 70 km of a pile-driving event (defined as an exposure), we selected 

the dive data from 4 h before until 2 h after the pile-driving event. For each dive, the response 

variables were calculated. For the proportions 𝑝𝑏𝑜𝑡𝑡𝑜𝑚 and 𝑑𝜇/𝑚𝑎𝑥, we assumed a beta distribution with 

𝜇 = 𝑝/(𝑝 + 𝑞) and 𝜙 = 𝑝 + 𝑞, where p and q are the estimated parameters of the beta distribution, and 𝜇 

and 𝜙 he derived parameters (Ferrari & Cribari-Neto 2004), and logistic link function (hence 𝜇 is the 

inverse of that link function;𝜇 =
𝑒𝜂

1+𝑒𝜂
) 

𝑝𝑏𝑜𝑡𝑡𝑜𝑚, 𝑑𝜇/𝑚𝑎𝑥~ 𝐵𝑒𝑡𝑎(𝜇, 𝜙) 

𝜇 =
𝑒𝜂

1 + 𝑒𝜂
 

 

For the descent speed 𝑣𝑑𝑒𝑠𝑐𝑒𝑛𝑡, we assumed a gamma distribution  

𝑣𝑑𝑒𝑠𝑐𝑒𝑛𝑡~ 𝐺𝑎𝑚𝑚𝑎(𝜇, 𝑘) 

𝜇 = 𝑒𝜂 

In both cases, the linear predictor 𝜂 was subsequently modelled as a function of period specific 

parameters (𝛽𝑡0
, 𝛽𝑡𝑐

, 𝛽𝑡1
) and a temporally correlated smooth 

𝜂 = 𝛽𝑡0
+ 𝛽𝑡𝑐

+ 𝛽𝑡1
+ 𝜈 

𝜈 = 𝑓(𝑡) + 𝜀 

𝜀 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)   (1.1) 

The coefficient 𝛽𝑡0
is the average fraction of time at depth prior to pile-driving (t0), and  

𝛽𝑡𝑐
  and 𝛽𝑡1

 quantify the relative changes in the fraction of time at depth during the pile-driving period 

(tc) and 2 hours after the pile driving (t1), respectively. 𝜈 is a temporally correlated auto-regressive 

term, which captures any correlation in the residuals. When pile-driving significantly reduces the 

fraction of time at depth during the pile-driving, the parameter 𝛽𝑡𝑐
 should be significantly smaller than 

zero.  

This analysis produced for each seal and each pile-driving event, an estimate of the size of the effect 

(𝛽𝑡𝑐
), and corresponding uncertainty. Next, we modelled how these parameters varied as a function of 

the following covariates: distance to the pile-driving (dist), proportion of the trip (Ptrip), estimated SEL 

(SEL), wind speed (wind; Wind speed correlates with wave action and, therefore, masking of sound 

propagation), individual-specific cumulative number of exposures (Ci) and individual (I): 

𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽 , 𝜎𝛽) 

𝜇𝛽 = 𝑠(𝑑𝑖𝑠𝑡)𝑖 + 𝑠(𝑆𝐸𝐿)𝑖 + 𝑠(𝑤𝑖𝑛𝑑)𝑖 + 𝑠(𝐶)𝑖 + 𝑠(𝑃𝑡𝑟𝑖𝑝)
𝑖

+ 𝜋𝑖 

𝜋𝑖 = 𝐼𝑖 + 𝜖 

                     (1.2) 

 

Where s() are smooth functions of the variables. The size of the effect (i.e. 𝛽𝑡𝑐
) was allowed to vary by 

individual using an individual-specific random effect 𝜋𝑖. Least-squared cross-validation was used to 

select the best model, where Eq. 1.2 specifies the full-model. SEL estimates were only available for 

Luchterduinen pile-driving, and hence the models using SEL as covariate were fitted to a subset of the 
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data. Although it would be theoretically possible to fit the models 1.1 and 1.2 in a single framework, 

given the large number of data points this was practically unfeasible.  

 

2.3.2 Change in speed  

In addition to a change in diving behaviour, the seals’ response to pile-driving may include a change in 

horizontal speed (i.e. swim away from the perceived sound source). To estimate the movement of the 

seal relative to the pile-driving, its movement prior, during and after pile-driving was characterised by 

two vectors; one indicating the speed towards the pile-driving (v1) and another perpendicular to pile-

driving (v2), which were estimated using standard matrix rotation functions:  

𝑣1 = 𝑠𝑖𝑛(𝛼)𝑣𝑥 + 𝑐𝑜𝑠(𝛼)𝑣𝑦 

𝑣2 = 𝑐𝑜𝑠(𝛼)𝑣𝑥 − 𝑠𝑖𝑛(𝛼)𝑣𝑦 

vx and vy are the speed in x (longitudinal) and y (latitudinal) direction. The variables v1 and v2 were 

used to study if seals changed their behaviour in response to piling. The analysis was identical to the 

dive analysis, except that the model was fitted to the GPS location data (i.e. generally less 

observations) and the response variable was assumed to have a Gaussian distribution.  
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3 Results 

3.1 Pile driving 

Each monopile had a unique pile-driving record (Figure 2). Most monopiles were driven in during 

single periods, but some required two periods due to a malfunction in the first period. Also, several 

pile-driving events had intermediate breaks that exceeded 1 hour – sufficient time for an animal to 

consider the event had finished – so were considered to be two events. For Luchterduinen, this 

resulted in 45 pile-driving events, and for Gemini, there were 166 events. On average, each pile-

driving event lasted 2 h with the maximum duration being 5.3 h. For Luchterduinen, the penetration 

depth of 40 (91%) monopiles ranged between 23 and 30 m into the sea floor (27 ± 4 m): four went 

deeper, the deepest to 47 m. For Gemini, the penetration depth varied between 19 and 34 m 

Monopiles required on average 4100 blows to reach their required depth. The maximum hammer 

energy used in each monopile averaged 951 kJ (SD = 137 kJ) for Luchterduinen, and 1218 kJ (SD = 

257 kJ) for Gemini (see also Figure 1).  
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Figure 2. Examples of pile-driving logs from Luchterduinen (top two figures) and Gemini 

(bottom two figures). The red horizontal lines indicate energy level (kJ/blow). Vertical grey 

lines indicate start and stop times of a series of hammer blows with similar energy levels.   

3.2 Seal movement 

For overlap with pile-driving at Luchterduinen, 20 trackers were deployed in April 2014 – 10 north of 

Texel in the Wadden Sea and 10 at Aardappelbult in the Delta region (Table 1). Twelve of the grey 

seals were females and eight males; six were sub-adults and 14 adults. Nose to tail lengths averaged 

155 ± 19 cm (range 117 to 187) and weights averaged 83 ± 30 kg (range 30 to 134). Periods of 

tracking averaged 213 ± 55 d (range 73 to 299). Nineteen of the trackers operated during part of the 

pile-driving period with 13 recording over the entire period. 

For overlap with pile-driving at Gemini, seven trackers were deployed in April 2015, and nine in 

September 2015 (Table 1). Thirteen were deployed at Blauwe Balg, and three September deployments 

were at Pinkegat. Five of the seals were females and 11 were males, 12 were sub--adult and four 

were adult. Mean tracking durations were 171 ± 42 days (n = 7, range 98 to 208) for seals caught in 

April and 88 ± 50 days (n = 9, range 6 to 132) for seals caught in September. All seals were tracked 

during the pile-driving period, including four, that were tracked during the entire construction period. 

Table 1. Grey seals tracked to investigate responses to pile-driving activities in the 

Netherlands in 2014 (at Luchterduinen) and 2015 (at Gemini).   

Sample Seal Sex Age group Length Weight Date out Last day Duration 

hg43L         

Delta Z006 F adult 170 121 4-Apr-14 10-Dec-14 250 

Delta Z007 F sub adult 117 37 2-Apr-14 15-Oct-14 196 
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Sample Seal Sex Age group Length Weight Date out Last day Duration 

Delta Z018 F adult 165 100 4-Apr-14 1-Oct-14 180 

Delta Z024 F adult 149 82 3-Apr-14 4-Jan-15 276 

Delta Z037 M adult 176 99 3-Apr-14 2-Sep-14 152 

Delta Z045 M adult 187 126 4-Apr-14 22-Sep-14 171 

Delta Z046 F adult 168 101 4-Apr-14 28-Jan-15 299 

Delta Z062 F adult 165 86 4-Apr-14 4-Dec-14 244 

Delta Z063 F sub adult 117 30 2-Apr-14 1-Aug-14 121 

Delta Z066 M adult 152 70 2-Apr-14 4-Nov-14 216 

Texel T003 F adult 155 74 16-Apr-14 10-Dec-14 238 

Texel T040 F adult 152 97 15-Apr-14 5-Dec-14 234 

Texel T042 F sub adult 136 50 15-Apr-14 9-Dec-14 238 

Texel T076 F adult 179 101 16-Apr-14 11-Dec-14 239 

Texel T078 M adult 158 80 16-Apr-14 30-Dec-14 258 

Texel T079 M adult 172 134 15-Apr-14 10-Nov-14 209 

Texel T080 M sub adult 142 60 16-Apr-14 4-Dec-14 232 

Texel T081 M sub adult 136 47 15-Apr-14 27-Jun-14 73 

Texel T094 M sub adult 140 59 16-Apr-14 28-Sep-14 165 

Texel T875 F adult 159 108 15-Apr-14 5-Jan-15 265 

hg46G         

Blauwe 

Balg 
A077 M sub adult 139 38 14-Apr-15 8-Nov-15 208 

Blauwe 

Balg 
A112 M sub adult 146 63 15-Apr-15 12-Sep-15 150 

Blauwe 

Balg 
A113 M sub adult 136 60 15-Apr-15 3-Sep-15 141 

Blauwe 

Balg 
A114 F sub adult 112 32 14-Apr-15 8-Nov-15 208 

Blauwe 

Balg 
A116 M sub adult 145 73 15-Apr-15 21-okt-15 189 

Blauwe 

Balg 
A119 F adult 168 90 14-Apr-15 1-Nov-15 201 

Blauwe 

Balg 
A317 M sub adult 111 35 14-Apr-15 21-Jul-15 98 

hg51G         

Blauwe 

Balg 
B110 F adult 166 141 23-Sep-15 05-okt-15 12 

Blauwe 

Balg 
B112 M sub adult 134 45 23-Sep-15 31-Jan-16 130 
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Sample Seal Sex Age group Length Weight Date out Last day Duration 

Blauwe 

Balg 
B113 M adult 184 169 23-Sep-15 10-Feb-16 140 

Blauwe 

Balg 
B121 F sub adult 123 41 23-Sep-15 2-Feb-16 132 

Blauwe 

Balg 
B130 M sub adult 129 47 23-Sep-15 29-Sep-15 6 

Pinkegat B132 M subadult 146 75 22-Sep-15 12-Jan-16 112 

Pinkegat B133 M subadult 132 52 22-Sep-15 3-Dec-15 72 

Pinkegat B136 F adult 157 85 22-Sep-15 31-Dec-15 100 

Blauwe 

Balg 
B144 M subadult 135 47 23-Sep-15 24-Dec-15 92 

 

The seals expressed considerable individual variation in movement with some remaining within Dutch 

waters and others crossing the North Sea (Figure 3 - Luchterduinen, Figure 4 - Gemini). The 

maximum distances achieved from catch locations ranged up to 861 km.  
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Figure 3. Luchterduinen 2014. Locations recorded for 20 grey seals tracked during 2014. 

Different colours are different seals. Deployment sites were in Wadden Sea, and Delta 

region, and the location of Luchterduinen windfarm is indicated. 
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22 of 54 | Wageningen Marine Research report C006/18 

 

 

Figure 4. Gemini 2014. Locations recorded for grey seals tracked following tracker 

deployments in April (upper: seven seals) and September (lower: nine seals) 2015. Seal 

capture sites were Pinkegat and Blauwe Balg. The Gemini windfarm is indicated (red 

boxes). 
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3.3 Seal responses to pile-driving 

3.3.1 Overlap between seals and pile-driving 

Of the 36 grey seals tracked, movements of 20 grey seals were recorded during the pile-driving period 

of either Luchterduinen or Gemini, that were at least once within 70km of pile-driving and outside the 

shallow (<10m) waters of the Wadden and Delta coast (here defined as the shallow areas >50km 

from Pile-driving). The motivation for the exclusion was that received sound levels would be very 

unreliable.  From these we identified 261 “exposures” (i.e. the seals’ presence within 70 km of a pile-

driving event). However, for several exposures there was no GPS location near the start of the pile-

driving (i.e. within 2 hour), or dive data. Eventually, 175 exposures could be used for the analysis. At 

the start of pile-driving events, the smallest straight-line distances between tracked seals in the water 

and the pile location was 11km, and 36 were within 30km, the remaining 139 exposures were beyond 

30km (Figure 6). Generally, the seals were inshore of the pile-driving events (i.e. in shallower waters), 

which was also the case during the pre-construct phase (Brasseur & Kirkwood 2015).   
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Figure 5. Top: Locations of seals exposed to Luchterduinen pile-driving 31 July to 16 

October, 2014. Exposures are indicated by orange circles, red dots indicate exposures 

during which significant behavioural responses were detected, and black dots are all seal 

GPS locations during the respective periods. Blue areas are the windfarm areas. Below: seal 

distribution before and after the pile-driving 
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Figure 6. Locations of seals exposed to Gemini pile-driving 1 July to October 17, 2015. See 

Figure 5 for more details 

3.3.2 Diving behaviour during pile-driving  

Visually detectable changes to the dive patterns at the commencement of pile-driving were evident in 

a number of cases. The most typical responses observed were for a seal to lower its descent speed 

(presumably diving more diagonally and moving away) and when it was spending a high proportion of 
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its’ time near the bottom (presumably foraging) prior to pile driving, to decrease its average dive 

depth (e.g. Figure 7). The diving pattern often became much more irregular; mixing long and short 

dives, with many dives not reaching the sea floor. Also, during pile-driving the seals performed 

occasional high speed descents and ascents.  

Although there was a typical response pattern coinciding with pile-driving, exemplified by a reduction 

in bottom time, there was considerable variation within and between individuals. Seal hg46G-A119 

provided an example of the variability in responses by an individual. On 25 September 2015, this seal 

was 30 km from a pile-driving event and responded by dramatically reducing its bottom time (Figure 

8). One week later, on 4 October 2015, this seal was 45 km from a pile-driving event. The event 

coincided with the seal breaking from period at the surface, potentially at rest, and a resumption in 

bottom diving – hence, it showed an increase in bottom time (Figure 9). 

The strength of a seals’ response did correlate with distance from pile-driving, but there was large 

variability in the responses between exposures. On occasions a significant response occurred at large 

distances, e.g. based on the analysis one occurred at 48km away from the pile-driving (Figure 7). On 

other occasions, no clear response in diving was apparent, even at close range (i.e. 12km, Figure 10).  

On several occasions, a change in movement direction or speed occurred. For example, seal hg46G-

A119-14 (on August 24 2015, at 16km from pile-driving) showed a strong increase in swim speed, up 

to 1.8 m/s and persisted in swimming at such a high speed for more than an hour. Interestingly, the 

seal did not swim away in a single direction, but swam in a large circle during its exposure to pile-

driving. On other occasions, pile-driving lead to a sudden change in movement direction, while no 

clear change in diving behaviour was apparent. This was for example the case for seal hg46G-A119-

14, exposed to pile-driving 29km away, on August 4 2015. The seal did not swam away from the pile-

driving, but made a 90-degree right turn (Figure 12). On several other occasions, exposure to pile-

driving lead to a change in dive behaviour, and also a (temporary) change in movement away from 

the pile-driving (see e.g. Figure 14.) 

  



 

Wageningen Marine Research report C006/18 | 27 of 54 

 
Figure 7. Example of a typical response to pile driving: seal hg46G-A119, 48 km away on 15 August 2015 (monopole X2). Coinciding with commencement of 

pile-driving (1st panel, left), the seals’ diving behaviour became irregular (5th/bottom panel, left), descent speeds declined (3rd panel, left), and average dive 

depth (as fraction of the water depth) decreased (4th panel, left), implying that seals stayed more time near the surface or mid-water, and less time near the 

bottom. After pile-driving ceased, more routine dive patterns resumed. The 2nd panel on the left shows the distance to the wind park, with each dot 

representing a GPS fix. The right figure indicates the movement of the seal in relation to pile-driving site (blue dot). The colours represent locations prior 

(green), during (red) and after (orange) pile-driving. The end point of the black arrow indicates the expected location of the seal when the seal would 
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continue its normal track based on last direction and speed of the green, non-disturbed track. If the first red location (during pile driving) is far away from the 

end point of the arrow, this is indicative of a change in movement speed and/or direction.  

 

Figure 8. Example of seal reducing its bottom time and changing direction during a pile-driving event: seal hg46G-A119, 30 km from pile-driving on 25 

September 2015 (monopile A2).  
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Figure 9. Example of seal increasing its bottom time during a pile-driving event: seal hg46G-A119, 45 km from a pile-driving on 4 October 2015 (Monopole J2). 
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Figure 10. Example of seal showing only a slight response during a close pile-driving event: seal hg51G-B133, 12 km away on 24 September 2015. 
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Figure 11. Example of seal hg46G-A119-14 (at 16km from pile-driving on August 24 2015, monopole K2) decreasing its dive depth and descent speed at the 

start of pile-driving event. Note the high horizontal movement speeds, shown by size of red dots on the map: up to 1.8 m/s  during pile-driving. Such high 

speeds are at the 2‰ quantile of observed swim speeds for that seal.  



 

32 of 54 | Wageningen Marine Research report C006/18 

 

Figure 12. Example of seal hg46G-A119-14 at 29km from pile-driving on 4-8-2015 (monopole OHVS1-B3). Only a slight (non-significant) change in the 

average dive depth is apparent, but the seal has changed its movement course. If the seal had continued its path, the first red dot was expected to be located 

at the end of the black arrow, but clearly the seal did change course and speed once pile-driving commenced.  Ultimately, it resumed its travel direction to pre-

piling. 
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Figure 13 Example of change in movement direction away from pile-driving. Seal hg43LZ-Z024-14  was exposed to Luchterduinen pile driving (E07) 24km 

away on 10-10-2014. Just after the start of pile-driving, the seal decreased its descent speed (presumable swimming away), and decreased its average dive 

depth. Also it changed its swim direction: Prior to pile-driving it was heading north, but, after pile-driving had started, it was located further south, and must 

have changed its course. However, after approximately 30 minutes, it continued in northern direction again. 
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Figure 14. Another example of change in movement direction and dive behaviour. Seal hg46G-A119-14 was exposed to pile driving (B4) 23km away on 04-08-

2015. Just after the start of pile-driving, the seal decreased its descent speed (presumably swimming away), and for a short duration, decreased its dive 

depth. Also, it changed its swim direction: Prior to pile-driving it was heading north, but, after pile-driving started, it moved first south, and eventually 

continued westward. 
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Despite the large variability in the behavioural response observed, some responses occurred 

consistently more often at smaller distances from the pile-driving, demonstrating the link with the 

pile-driving activity. From the behavioural response variables explored, the change in descent speed 

(measured from 1% of the dive to near the bottom), showed the strongest relation with distance to 

the pile-driving (p-value = 0.00014). Up to 36 km from the pile-driving the estimated average 

decrease in decent speed was significantly different from no change (i.e. 0).  (Figure 15, top figure). 

The effect of distance to pile-driving on the change in descent speed was also observed when 

analysing the data from Luchterduinen en Gemini independently (Figure 15, bottom figures).  

There was however large variabibility in the observed change in descent speed; Sometimes no change 

or even an increase in descent speed occurred at small distances from pile-driving (see also Figure 

10). In other instances, as indicated by the thick circles in Figure 15 a significant decrease in descent 

speed was observed well beyond the 36km (e.g. at 48km, Figure 7). However, overall the largest 

changes in descent speed occurred at smaller distances, and such changes occurred more frequently.  

  

 

Figure 15. Change in descent speed (m/s) during pile-driving, as function of distance to the 

pile-driving. Each grey point represents an exposure. The solid black line represents the 

mean estimate, and the shaded orange area the 95% confidence interval (with 2.5% and 

97.5% lower and upper limits, respectively). The orange vertical line (at 36km in top 

figure) indicates 97.5% certainty of a significant decrease in descent speed. Thick red 

circles are exposures where the descent speed drops significantly during piling. The lighter 
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orange circles are exposures where significant changes in other behavioural response 

variables were observed (i.e. average dive depth or change in (horizontal) movement). 

Analysis is presented for all data (top figure), and for Luchterduinen and Gemini separately 

(bottom figures). 

 

We also studied whether other covariates influenced the size of the effect (i.e. change in descent 

speed).  Seals may differ in their behavioural response to under water sound. However, adding seal-id 

as random effect, did not lead to a significant improvement (p=0.43) in explaining the observed 

variability in the responses.  The number of animals, and hence the statistical power might be too low. 

Or the variability in response is perhaps more context-dependend, rather than individual dependend. 

The water depth influences the SELss, but may also affect the seal behaviour. However, adding a 

smooth of the depth as a covariate, did not lead to an improvement of the model (p-value = 0.35). 

However, since exposures occuring at shallow depths (>10 m depth) were not included in the analysis 

the effect of depth was possibly removed a-priori. Windspeed may increase the background noise, and 

as such mask the pile-driving sound. There were suggestions, based on single events, that this might 

occur (e.g. seal hg51G-B133 moving towards the pile-driving on 24 September, occured at 

windspeeds of 6 Bft, Figure 10). Adding an interaction-term between distance to pile-driving and 

windspeed, did lead to a signficant improvement in the model (p= 0.0007), though counterintuitive, 

the results suggest that the decline in descent speed is more severere at higher wind speed. Finally we 

tested whether an increased number of exposures for each individual led to an increase (sensitisation) 

or decrease (habituation) of the effect size. This was not observed in the data (p-value = 1.0). It 

should be noted that it was challeging to determine the number of times an individual was exposed to 

pile driving, since a seal might be capable of hearing pile-driving at large distances. It might however 

not consider this as ‘disturbing’ and might also not necesarry know where pile-driving occurs.  

 

3.3.3 Behavioural responses in relation to sound exposure levels (SELss) 

Ultimately, seals are expected to increase their response relative to the loudness of sound they are 

exposed to, and distance to pile-driving is then merely a proxy for SEL (or Sound Pressure Level - 

SPL). However, wind-corrected maps of SEL for seals exposed to pile-driving near Gemini were not 

readily available at the time of this study. For Luchterduinen, the levels of sound at which seals were 

potentially exposed to pile-driving were estimated to range up to 150 dB re 1 μPa2 (Figure 16). As 

expected, the SELss decreased with distance. However, there were considerable deviations, which 

were caused by the heterogeneous bottom topography and differences in wind speed. Overall, the 

SELss experienced near the surface was lower compared to close to the bottom, due to surface-

specific attenuation of the pile-driving sound.  

 

Figure 16. Correlation between Sound Exposure Level single strike (SELss, in dB re 1 μPa2) 

near the bottom, and distance to the pile-driving site determined for the exposure events. 
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The figure is based on the SELss estimates which assumes no effect of wind on attenuation 

(i.e. wind speed = 0 m/s). 

 

To investigate the effect of SELss on the change in descent speed, we used the SELss estimates near 

the bottom, and assumed wind speed of 0 m/s (regardless of the actual wind conditions at the time of 

the exposure). In that case, a behavioural response was estimated to occurr (with 97.5% certainty) 

up to 133 dB re 1 μPa2 (Figure 17). For SELss exceeding ~137 dB re 1 μPa2, the majority of exposures 

(i.e. 10 out of 18) did lead to a signficant behavioural response in any of the dive or movement 

variables.  

  

 

Figure 17. Unweighted Sound Exposure Level from a single strike (SELss, in dB re 1 μPa2) 

during pile-driving and change in descent speed. For more details, see Figure 15. SELss 

estimates assumed no effect of wind (i.e. wind speed of 0 m/s). The solid red line 

represents the mean estimate, and the shaded orange area the 95% confidence interval 

(with 2.5% and 97.5% lower and upper limits, respectively). Thick red circles are 

exposures where the descent speed drops significantly during piling. The lighter orange 

circles are exposures where significant changes in other behavioural response variables 

were observed (i.e. average dive depth or change in (horizontal) movement). The orange 

vertical line (at 133 dB re 1 μPa2) indicates 97.5% certainty of a significant decrease in 

descent speed.  For SELss exceeding ~137 dB re 1 μPa2, the majority of exposures (10 out 

of 18) showed a significant behavioural response in one of the dive or movement variables. 

 

3.3.4 Spatial movement in the vicinity of pile-driving 

There was large variability in the change in movement direction during pile-driving. Depending on the 

exposure, individuals moved either towards or away from the pile-driving events. For the 

Luchterduinen windfarm, avoidance was not apparent, but for Gemini, there was on average more 

movement away from pile-driving (Figure 18). For example, up to 40 km from Gemini, grey seals 

moved away from pile driving in 19 of the 25 exposures. The 2.5% lower confidence band was above 

zero up to 33 km distance, which indicated that seals on average showed a statistically significant 

avoidance up to this distance. For both Luchterduinen and Gemini, there were very few exposures at 

small distances (<20km), because seal density was low in the direct vicinity. This explains the larger 

confidence intervals in this region. Also, the number of GPS locations (every 15 minutes, but often less 
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frequent) that could be used in the analysis was much smaller than for the dive analysis, and hence 

the statistical power for this analysis was much smaller. A model was also fitted to simulated false 

pile-driving scenarios, where the pile-driving period was shifted backward or forward randomly 

between 0 and 24 hours. These analysis did not show a dependency with distance to the ‘false’ pile-

driving times (p-value=0.94). This shows that tendency to move away correlated with pile-driving and 

were not the consequence of the analytical procedure used.  

 

Figure 18. Change in movement speed before and after pile driving started relative to the 

Gemini pile driving site. Negative values indicate that the movement of seals was directed 

more  away from the site. The shaded area represents the 95% confidence interval of that 

mean estimate. For Gemini, grey seals < 33km from pile-driving tended to move away . 
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4 Discussion 

Grey seals are abundant, top-level predators in the North Sea. Their numbers, distribution and density 

in this area have been increasing since the 1980s, possibly in response to their relatively recent 

protection from human hunting (Lambert 2002, Brasseur et al. 2015). The North Sea is however also 

a region of increasingly dense human activity, with heavily utilised shipping lanes, oil and gas 

installations, seismic surveys, dredging, fishing, explosive clearances and windfarm constructions 

(Degnbol & Wilson 2008, Ducrotoy & Elliott 2008). All these activities can produce sounds underwater 

that can be detected by marine mammals and may influence their behaviour (Southall et al. 2007). 

There has been minimal effort to understand how grey seals might be impacted by anthropogenic 

underwater sounds, particularly compared to efforts to measure such impacts on the harbour 

porpoises (Carstensen et al. 2006, Tougaard et al. 2009, Dähne et al. 2013, Kastelein et al. 2013b, 

Hastie et al. 2015). Recently, however, there have been several studies of acoustic abilities of grey 

seals (Götz & Janik 2011, Hastie et al. 2014, Stansbury et al. 2014), and given their protected status, 

governments, for example in the Netherlands, UK and Denmark, have included grey seals as species 

of interest in impact assessments of industrial activities (e.g. Skeate et al. 2012).  

In this study, we investigated potential responses of grey seals to pile-driving for offshore windfarms 

on the Dutch continental shelf. The approach was to attach tracking devices that transmitted location 

and diving data, to grey seals that could move within the vicinity of the windfarms. Seals were 

captured at sandbars as close to the respective windfarms as possible. As grey seals can move over 

great distances (McConnell et al. 1999, Matthiopoulos et al. 2004), there was no certainty that the 

tracked seals would remain in the area. Moreover, there was a time gap between when seals could be 

caught (by Dutch law, haul out sites are closed between May 15th and September 1st) and the 

designated pile-driving periods (again by Dutch law, between July and December). A positive result for 

the study was however that 20 tracked seals (in water depths >10 m near or within the Wadden Sea 

or Delta) were within 70 km of pile-driving events, resulting in 261 exposures. For several exposures 

however, there were no GPS locations near the start of the pile-driving, and 175 exposures could be 

used for the analysis. 

An important caveat in the results is that the interpretations of responses were derived from remotely 

recorded broad-scale, movement compared to the expected reaction of the seals and dive data that 

were limited to depth only: in average, only 2-3 locations were recorded per hour. Fine scale 

responses, such as altered sinuosity in travel or changed heart rate, that could have been indicative of 

an impact on the individual, could not be measured. Therefore, we probably overlooked events where 

seals might have reacted to the pile-driving.  

4.1 Seal dive behaviour and pile-driving 

An important finding of this study was that most often grey seals reduced descent speed (presumably 

diving more diagonally) and reduced their bottom time during pile-driving events, certainly on average 

when within 36 km from the pile-driving and occasionally at distances well beyond this. Grey seals are 

predominantly benthic feeders (Thompson et al. 1991), so a reduction in bottom time has a direct 

effect on their food intake and means the individuals would need to work harder to gain required 

resources during times when there was no pile-driving, or forage elsewhere.  

Changes in behaviour that corresponded in time to pile-driving would provide an indication that the 

grey seals were detecting pile-driving. Such changes were particularly evident in the seals’ dive 

profiles. There was, however, considerable variation in the response. On occasions a change in dive 

pattern was evident coinciding with, particularly, the commencement of pile-driving, while on other 

occasions a reaction to the pile-driving was either not evident, or not exactly synchronised with the 

pile-driving.  

 



 

40 of 54 | Wageningen Marine Research report C006/18 

4.2 Directional movement during pile-driving 

Similar to the behavioural changes observed in the diving profiles, there was large variability in the 

change in movement, with grey seals moving both towards and away from the pile-driving site. A 

significant effect was observed for seals near the Gemini wind park, but not for Luchterduinen, where 

less data were available. On average seals near Gemini would move away from the pile-driving site, 

and we can state with 97.5% certainty that this was significant at least up to 33 km. Up to 30 km the 

vast majority of seals moved away from pile-driving (19 out of 25). This pattern was not observed for 

the randomly created pile-driving events. 

It is not known if at these large distances the seals were able to accurately determine the direction 

from which the pile-driving sound was coming, as due to bottom and surface reflection and resonation, 

the sound may be received as a rumbling noise rather than the impact heard at closer range.  This 

could explain the unexpected seal movements observed. On one occasion a seal was swimming in a 

large circle at a high speed (~1.8 m/s) for nearly an hour (Figure 11). During another exposure, a 

seal suddenly changed its course, but the new course was not directed away from pile-driving (i.e. 

Figure 12). Also it is unknown if the seals could comprehend that the sound source (pile-driving) was 

not moving. For example, a ramp-up in pile-driving energy might be perceived by the seal as 

something approaching, which could make some seals increase speed or head towards perceived safe 

areas (shallow or deeper water), and others might attempt to determine the direction of the approach 

(for example by zig-zagging). Prior experience with the pile-driving in the area might influence the 

directional response of a seal during an exposure, because they could have a better idea of the 

direction to the pile-driving, its potential duration, and what behaviours or movements could minimise 

any potential disturbance from it, while maximising prey acquisition.  

On several occasions, particularly in relation to Luchterduinen windfarm, seals did move into shallower 

water during pile-driving (e.g. see Appendix), but again, this response was not consistent. 

Occasionally, a seal would move toward deeper water during pile-driving. The potential that water 

depth could influence movement patterns of grey seals during pile-driving events requires further 

investigation.  

 

4.3 Sound exposure levels 

This study indicates that a behavioural response by grey seals to pile-driving occurred in response to 

SELss of 133 dB re 1 μPa2s (1 m above the bottom, unweighted, assuming no wind-effect). This was 

below the threshold level of SELss = 145 dB re 1 μPa2s at which a review conducted prior to installation 

of Luchterduinen windfarm had predicted that seals would take evasive action (Heinis 2013): that 

level was based on the hearing ability and response of captive harbour seals (Kastelein et al. 2013b). 

One explanation for the discrepancy between assumed and actual levels at which grey seals might 

respond might be that grey seals are more responsive than harbour seals to pile-driving sound. 

However, a preliminary inspection of the dive-profile plots for harbour seals also showed occasional 

responses at larger distances (e.g. ~40 km, See Supplementary Figure 19).  

Another explanation might be that there is individual variability in the response of grey seals, both in 

the wild and in captivity. The two harbour seals exposed in captivity (Kastelein et al. 2013b) might be 

less sensitive, only responding at higher SELss. Or the context (i.e. being in captivity) might influence 

the probability and strength of the response. 

Finally, an explanation might be that the current sound model propagation estimates for SELss are 

inaccurate. Indeed, Binnerts and de Jong (2016) stress that the SELss estimates for distances beyond 

15 km are unreliable, whilst by far most of our measurements are beyond 15 km. Moreover, for higher 

wind speeds, mostly due to unknown effects of wind-related surface attenuation, and more inshore 

locations, were most seals are found, the estimates are likely less reliable (Binnerts & de Jong 2016). . 

The SELss measurements for Luchterduinen at 46.6 and 47.1 km were 120 and 118 dB re 1 μPa2s, 

respectively. The estimates by the Aquarius sound propagation model were 132 and 119 dB re 1 

μPa2s, respectively. These results suggest that the SELss estimates used in this study are more likely 

overestimates, rather than underestimates. This would imply that grey seals might respond to even 

lower received SELss (i.e. < 133 dB re 1 μPa2s).  
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4.4 Individual variability in behavioural response 

Although specific responses, notably a reduction in bottom time, could be correlated with the pile 

driving, even at large distances, there was large variability in measured response between and within 

individuals. On different occasions, grey seals were observed to: stop resting at the surface, increase 

their time at the surface, decrease the dive time spent near the maximum depth, increase their time 

at depth, or show no apparent response (see Figure 7 to Figure 14 ). One reason for the observed 

individual variability in the response might be individual differences in hearing abilities or sensitivity to 

sound. Harbour seals tested in captivity and in the field, have demonstrated significant differences 

between individual and within individual variability in hearing sensitivity (Kastelein et al. 2013a, Lucke 

et al. 2016). Old age, for example, can generally reduce hearing sensitivity, as was demonstrated in 

harbour seals (Lucke et al. 2016).  

In many cases, no response was observed. When seals are exposed to pile-driving, we expected that 

they would often switch from a foraging state (straight descent and long bottom time), towards a 

transit state (more diagonal movement and less time near the bottom). A more diagonal movement 

(and lower vertical descent speed) would indeed be a more efficient route to maximize movement in 

the horizontal plane. Seals, however, also need to take current speed into account, and current speed 

varies by depth (Wagenaar & Eecen 2010). Depending on the direction of travel and the direction of 

the current, it may be more efficient to travel as close to the bottom – where current speed is often 

lowest - as possible. In that case, it can be challenging to differentiate between foraging and fleeing.   

Seals may also respond differently because pile-driving sounds would be masked to different degrees 

over time. For example, strong wind or other anthropogenic sound sources, such as nearby shipping, 

dredging, or fishing activity,  but also presence of underwater dunes or gullies might attenuate the 

propagation of sound and could reduce the seals chance of detecting the pile-driving sounds.  

Finally, individual qualities of each seal could influence how it responds to a stressor, such as 

anthropogenic sound. For example, the startle response of animals can be influenced by their 

nutritional status, sex or hormonal condition (Plappert et al. 2005). Thus, there are numerous 

exogenous and endogenous reasons for there being a broad range of responses to pile-driving. In this 

study, there was large variability in the observed responses, but we did not find significant evidence 

that this variability was the result of between-individual. However it should be noted that the number 

of individuals exposed at small distances (tens of kilometres), was probably too small for such an 

analysis. 

 

4.4.1 Potential prior experience with pile-driving  

An important consideration for the interpretation of these data is that information is not available on 

the prior experience of individual seals to pile-driving, nor what exposure they had to other potentially 

disturbing activities at the site. During the months prior to pile-driving at Luchterduinen, there was 

increased shipping and sonar activity over the area, the area was searched for unexploded ordnance, 

dredging was required to lay cables to each turbine, and layers of stones were dropped at each 

monopile site to provided scour protection. Therefore some individual seals with prior experience of 

windfarm construction may have already moved to other areas prior to the commencement of pile-

driving.  Hence, in this study we could only measure behavioural response of those individuals that 

remained in the vicinity of the construction sites. 

In recent years, there has been considerable pile-driving activity in the North Sea including in close 

proximity to the Dutch coastal zone. Twenty kilometres north of Luchterduinen, 36 towers were 

installed at OWEZ windfarm in 2006 and 60 were installed at PAWP in 2007. Also since 2008, 181 

towers have been installed at three Belgian windfarms, 60-70 km south west of our seal capture sites 

in the Delta, and 415 have been installed at three UK windfarms, within 170 km of the Dutch Delta 

region. Potentially, all the grey seals we tracked had heard at least one pile-driving event previously. 

They could have been aware that a pile-driving event would last a particular duration (e.g. 2 hours) 

and then stop for a duration (e.g. 12 to 24 hours). The varying degrees of prior experience of the 

tracked seals with pile-driving (potential habituation for some individuals) could have mitigated 

reactions to later pile-driving events.  
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In addition, while pile-driving at windfarms would have been one source for sound on the Dutch 

coastal zone in 2014 and 2015, other sources included shipping activity, dredging, fishing and 

occasional retrieved ordnance explosions (e.g. see von Benda-Beckmann et al. 2015). Responses to 

sounds from these sources could mask potential responses to the pile-driving at windfarms, and 

complicate interpretations.  

Hence, there are multiple reasons why detection of actual changes in seal behaviour coinciding with 

pile-driving could be difficult, especially because all data come from back-mounted tracking devices. 

That the data, particularly the dive-profiles and speed data, frequently indicate changes in behaviour 

that overlap in time with pile-driving, is of interest and requires further investigation. This represents 

the first study to record overlap between movement and behaviour of individually tracked grey seals 

and pile-driving, and the results have relevance to future pile-driving activities in the Netherlands and 

elsewhere. This study suggest that for grey seals the SEL response threshold is lower, and impact 

distance is higher than previously thought (based on two captive harbour seal study Kastelein et al. 

2013b), and therefore that more grey seals might be exposed and impacted during pile driving 

activities. 

 

4.4.2 Potential reasons to tolerate pile-driving 

Some individual grey seals that were exposed to pile-driving, continued to return to the vicinity of the 

windfarms on subsequent trips and, accordingly, received multiple exposures. Potentially, the 

motivation to frequently visit the area was that it contained prey resources which the seals perceived 

to be more available to it, than prey resources elsewhere. The seals might choose to accept the risk of 

pile-driving rather than take the risk of leaving a known foraging area to seek prey elsewhere.  

Grey seals have a high fidelity to breeding sites (Pomeroy et al. 1994, Twiss et al. 1994, Pomeroy et 

al. 2000), and probably also to moulting and resting sites (Karlsson et al. 2005). At sea, there are also 

indications of local preferences and site-fidelities (Oksanen et al. 2014), although long term data are 

scarce. Seals operate in an open environment through which they continually balance the metabolic 

costs and gains of remaining in an area with the metabolic costs and gains of moving elsewhere. The 

motivation to shift is typically less than the motivation to remain, because shifting exposes the seal to 

unpredictable variables (such as prey, predators, disturbance and conspecific competition). This is a 

known phenomenon that complicates simplified optimal foraging theories (Kamil et al. 1993), because 

it appears as if the animal is not foraging optimally. For the three grey seals that frequently moved 

into the area inshore from Luchterduinen before and during pile-driving, the perceived benefits of the 

prey resources there, did apparently exceeded the perceived costs of visiting the area and being 

exposed to pile-driving, and did not induced them to forage elsewhere.  

Seals exposed to a disturbance in an area, could continue to visit the area in that season, because of 

the anticipated costs of moving, but avoid the area in subsequent years, due to the memory of the 

disturbance. Accordingly, the knowledge that pile-driving occurred in the vicinity of Luchterduinen 

might influence foraging area selection by a seal in following years. However, detecting such a 

reaction could require tracking of the same individual in later years, and knowledge of inter-annual 

variability in foraging ranges of individuals. Multi-year data from the same individual do currently not 

exist. 

 

4.5 Potential population-level consequences 

This study shows an evasion reaction and change in dive behaviour for at least some grey seals 

exposed to pile-driving at a distance of several tens of kilometres away from the pile-driving site. Not 

all individuals appear to respond, but this could be (partly) because of our inability to detect the 

changes in behaviour, given the large individual variability. For those individuals that do evidently 

respond, a switch from a foraging state to a more transit state seems apparent. How much reduction 

precisely is caused by the exposure to pile-driving is difficult to estimate. Either they switch 

completely to a non-foraging behavioural state, or continue feeding, but do so less efficiently. Given 

the potential large effect range, a large section of the population could be influenced.  
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Whether this ultimately impacts the population as a whole (e.g. reduced survival or reproduction), is 

difficult to determine, and depends on many factors, e.g. seasonal variation in food requirement and 

energy reserves. An individual on the verge of dying of starvation, might be pushed over the limit and 

die as a consequence of human disturbance. While at other times of the year or other individuals, the 

temporary inability to feed might be compensated for and therefor have no measurable consequences.  

Another process that will play a role is whether there is density dependent competition for food 

resources between seals. Reduced local foraging abilities (e.g. due to disturbance), may potentially 

lead to less depletion and hence a higher remaining prey-availability for future feeding trips or other 

individuals of the population. Although challenging, these questions are fundamental to answer when 

attempting to estimate the population-level effects of disturbance. 

 

4.6 Cumulative effects of underwater sound 

One of the striking results of this study is that grey seals can respond to pile driving at large 

distances, significant changes in behaviour were seen even beyond 48 km. Pile driving is a relative 

loud sound source, but underwater explosions are even louder (albeit infrequent and only single 

impulsive sound). Also, seismic surveys are loud and produce low frequency sounds. In addition, there 

are sound sources which have lower source levels (e.g. shipping, dredging or operating windfarms), 

but are more abundant and continuous. Hence, seals (and other marine mammals) will be exposed to 

anthropogenic sound on a regular basis, and may be influenced more than previously assumed. Since 

the hearing abilities of harbour and grey seals is centred more around the lower frequencies 

(compared to e.g. harbour porpoises), and most anthropogenic sound is at similar lower frequencies, 

they are likely to be particularly sensitive to anthropogenic sound. Moreover low frequency sounds are 

known to carry further than high frequency. 

So far, most research attention has focussed on temporal and permanent hearing loss, this is 

potentially more relevant for harbour porpoises as they rely on echo-location to navigate and detect 

prey and would potentially suffer directly from a loss in hearing. However, the ability to acoustically 

detect prey might also be important for harbour and grey seals (Stansbury et al. 2014). When it 

comes to assessing the impact of underwater sound on their behaviour, a multitude of factors play a 

role. Perhaps the best starting point is to assess whether the sound is audible (given a specific 

background noise), and subsequently how marine mammals respond to this and what the (population-

level) consequences are.  

 

4.7 Future research 

This study was focussed on testing for a behavioural response in relation to pile-driving, and 

determining what type of response is invoked, and at what distance (or SEL). Much more extensive 

analysis can be carried out on the existing dive and location data. One candidate analysis is to carry 

out a more individual- and context-specific analysis:  Is the animal exposed multiple times, and what 

was the sound-exposure level? At what section of its feeding trip was it exposed? And what was its 

behaviour prior to pile-driving (i.e. feeding, transiting, resting)?  

Although there is room for improvement with the existing seal tracking data, there are also substantial 

shortcomings that might prevent a more in depth analysis. The GPS location data (only available when 

at the surface), is often temporarily sparse, and hence cannot be used to measure fine-scale sinuosity 

in movement. Dive data only provides information on movement in the vertical direction. For example, 

the existing dive data cannot differentiate between a slow vertical descent or ascent, and a faster 

more diagonal ascent and descent. Also changes in the proportion of time near maximum depth here 

assumed to be indicative for foraging, might also reflect other types of behaviour (e.g. transiting). A 

small proportion of time at bottom might be indicative of successful foraging, or of foraging on pelagic 

fish in mid-water. To classify the behaviour of seals more precisely, more fine-scaled movement data 

is required that can measure the 3-D movement underwater, but also detect prey-capture events (i.e. 

apparent in rapid acceleration of the neck). This could be attained by using accelerometers. The 



 

44 of 54 | Wageningen Marine Research report C006/18 

challenge however is to classify the vast amount of detailed data which is then collected into 

meaningful behavioural states. 

Another ‘limitation’ of this study is that both Luchterduinen and Gemini were located at relative large 

distances from the nearest haul-out site (>50km). Therefore, only those seals that venture into the 

vicinity of de wind parks were exposed, leading to relative few exposures at close range (<15km). The 

density of seals is substantially higher near the haul-out sites. Some of the future construction sites, 

e.g. Borssele near the Belgium-Dutch border are also much closer to the haul-out sites. Consequently, 

the construction of these parks and simultaneous tagging effort should lead to a much larger sample 

size of exposures at smaller distances. This would allow us to more clearly define how seals respond in 

response to pile-driving, and subsequently test whether similar behavioural changes also occur at 

larger distances. 
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5 Concluding Remarks 

When considering the influence of sound on marine mammals, several types of impacts can be 

discerned, e.g. temporary or permanent hearing loss; masking – which can reduce the ability to 

communicate, navigate or find prey; or disturbance – which can reduce the efficiency of the ongoing 

behaviour (e.g. feeding), or cause a flight response. This study has focused on disturbance by 

investigating changes in dive-patterns and movement direction during temporal and spatial overlap 

with pile-driving for the installation of offshore wind-turbine towers. The study shows that observed 

behavioural changes occur at tens of kilometres, which, compared with current understandings and 

controls on underwater sound production, are relatively large distances. Hence, even low sound 

exposure levels may lead to a large number of marine mammals (in this case grey seals) being 

influenced, particularly if such activities are located in regions of high marine mammal densities, e.g. 

in the vicinity of haul-out, breeding and/or feeding sites, or migration routes.  

Pile-driving is one of numerous anthropogenic sound sources that are detectable by marine mammals 

in the North Sea. Other sound sources, e.g. shipping, seismic surveys and underwater explosions, are 

present and, hence, disturbances by anthropogenic sounds are likely to occur on a regular basis. 

Similar to pile-driving, the effects of other anthropogenic sound sources are still poorly understood. 

Part of the reason for this has been our inability to follow an individual at large distance from these 

sound sources. However, the rise of smaller and effective animal-borne tracking devices combined 

with advanced statistical analysis techniques (e.g. Michelot et al. 2016, DeRuiter et al. 2017) provides 

an exciting opportunity for more in-depth understandings on how individual animals cope with all 

sound sources present in their environment.  
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Appendix 1  Example of movement inshore 

An example of movement by a grey seal (hg46L-Z037) into shallow water during a pile-driving event, 

on 3 August 2014, the first Luchterduinen pile-driving event encountered by this seal. The map 

provides locations of the seal (connected by interpolated lines), the yellow oval approximates the 

seal’s position during pile-driving. Note that the seals’ movement inshore pre-empted the 

commencement of pile-driving. The graph indicates dive depth against time of day. Black lines show 

diving behaviour of the seal, typically from the surface to the bottom (which shallows over time from 

22 m to <5 m after 6:30). The pink shading distinguishes stages during pile-driving, from a soft-start 

to continues hammering at high power. The numbering and colour scale on the 0 m (surface) line 

represent horizontal speed of the seal (in metres per second), which increases during the pile-driving. 
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Supplementary figure 

 

Figure 19. Example of a response to pile driving by a harbour seal (seal pv61-115-15, 40 km 

away on 24 September 2015 (monopole V4). Coinciding with commencement of pile-driving 

(top figure), the seals’ diving behaviour became irregular (bottom figure left), descent 

speeds declined, and average dive depth (as fraction of the water depth) decreased, 

implying that seals stayed more time near the surface or mid-water, and less time near the 

bottom. After pile-driving ceased, more routine dive patterns resumed. The right figure 

indicates the movement of the seal in relation to pile-driving site (blue dot). The colours 

represent locations prior (green), during (red) and after (orange) pile-driving. The small 

black arrow is the expected seal location (based on previous direction and speed) after 

commencement of piling.   



 

54 of 54 | Wageningen Marine Research report C006/18 

   

Wageningen Marine Research  

T +31 (0)317 48 09 00 

E: marine-research@wur.nl 

www.wur.eu/marine-research 

 

Visitors’ address 

• Ankerpark 27 1781 AG Den Helder  

• Korringaweg 5, 4401 NT Yerseke 

• Haringkade 1, 1976 CP IJmuiden  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Wageningen Marine Research is the Netherlands research institute 

established to provide the scientific support that is essential for developing 

policies and innovation in respect of the marine environment, fishery 

activities, aquaculture and the maritime sector. 

 

Wageningen University & Research: 

is specialised in the domain of healthy food and living environment. 

 

The Wageningen Marine Research vision 

‘To explore the potential of marine nature to improve the quality of life’ 

 

The Wageningen Marine Research mission 

• To conduct research with the aim of acquiring knowledge and offering 

advice on the sustainable management and use of marine and coastal 

areas. 

• Wageningen Marine Research is an independent, leading scientific 

research institute 

 

Wageningen Marine Research is part of the international knowledge 

organisation Wageningen UR (University & Research centre). Within 

Wageningen UR, nine specialised research institutes of the Stichting 

Wageningen Research Foundation have joined forces with Wageningen 

University to help answer the most important questions in the domain of 

healthy food and living environment. 

 

 


	Voorblad rapport UK- Gebruik voor PDF
	C006.18 Report Response grey seals to pile driving.JA-ih

