

Wind resource assessment and yield prediction

Post construction analysis

- Confidential -

Wind resource assessment and yield prediction

Post construction analysis Hoevensche Beemden, Laakse Vaart, Zwartenbergseweg

- Confidential -

By: Federico Montealegre & Sofia Boutsikoudi Date: 15 April 2014

Project number: WIENL14857

Reviewer:

Prepared:	Federico Montealegre M.Sc.	10.04.2014
Reviewed:	E. Holtslag	15.04.2014
Approved:	F. Flottemesch	16.04.2014
Filename:	20140429_REP_WRA_EttenLeur_post_c	construction_FINAL.docx
Pages	39	
Status	Final	

Version	Author	Date	Remarks/Change
1.0	FMo/SoB	15/04/2014	Draft version for client's review
2.0	FMo/SoB	28/04/2014	Draft version - Client's comments incorporated
2.0	FMo/SoB	29/04/2014	Final version

© Ecofys 2014 by order of: Eneco

Disclaimer

- 1. This report has been produced using industry standard models and information available at the date of this report. This report does not imply that these standard models nor this information is not subject to change, which may occur and may influence the conclusions and accuracy of the findings of this report.
- 2. Ecofys always recommends basing the wind climate calculations on on-site wind measurement campaigns to guarantee the highest accuracy and lowest uncertainty in the calculation. If such data is not available, Ecofys bases its characterisation of the local wind climate on the best available wind speed data and/or on estimates thereof. The availability and quality of such data directly impacts the quality and uncertainty of the calculations. Ecofys accepts no liability for any loss or damage suffered by the client and/or third parties stemming from any conclusions based on data supplied by parties other than Ecofys and used by Ecofys in preparing this report.
- 3. This document has been prepared for the sole use of the recipient for whom the document is prepared and should not be relied upon or used for any other project without prior written authority of Ecofys. Ecofys accepts no responsibility or liability for the consequence of this document being used for a purpose other than the purposes for which it was commissioned. The responsibility for the use of the findings and the results in the analysis remains with the Client.
- 4. The production and wind data supplied by the client specifically for this project, was accepted by Ecofys with the reservation that this information will be used exclusively for this project.

Summary

Ecofys performed a post construction wind resource assessment and yield prediction for wind farms Laakse Vaart, Hoevensche Beemden and Zwartenbergseweg. The goal of this study is to replace the preconstruction WRA's created in 2010-2011, which could not be based on actual accurate onsite data, therefore considered as less reliable estimate of the real long term production.

The current assessment is based on wind climatology (KNMI and Cabauw) and includes, as supportive evidence, real production data from the wind farms Hoevensche Beemden and Zwartenbergseweg curtailed to actual wind farm operating conditions. The wind farm layouts of three lines of five wind turbines each at a 105 m hub height were provided by the client, along with the turbines PV and CT curves "as built". Wind data acquired for the period 2000-2009 of the KNMI met station Cabauw was used (100%) climate in WindPro calculations.

Surface roughness information of the surroundings was acquired from the Data for Wind source and adjusted by information taken from satellite data and corrected for recent developments. The impact due to newly constructed developments north of the wind farms site was evaluated and according modifications of roughness lengths have been performed.

The resulting wind climate was validated against production data from nearby wind farms Hoevensche Beemden and Zwartenbergseweg. The WAsP/Windpro model results for the selected wind climate showed a particular good match with the long-term corrected production data of wind farm.

The wind turbine energy yields were calculated, including losses and uncertainties, as shown in the table below.

Table 1 - Key results			
	Hoevensche Beemden	Laakse Vaart	Zwartenbergseweg
Wind farm rated power [MW]	15	10	10
Hub height [m]	105	105	105
Wind speed at hub height [m/s]	7.1 ± 0.3	7.1 ± 0.3	7.1 ± 0.3
Ideal energy yield (no losses) [MWh/y]	37143	32,902	31399
Wake losses [%]	6% ± 2%	11% ± 3%	5% ± 1%
Total losses [%]	12% ± 2%	15% ± 3%	10% ± 1%
Net energy yield - P50 [MWh/y]	32,869	27,849	28,343
Full load hours - P50	2191	2785	2834
Uncertainty (long-term) [%]	11.5%	10.4%	10.2%
Net energy yield (P90 long-term) [MWh/y]	28,036	24,132	24,659
Full load hours - P90 (long-term)	1869	2413	2466
Net energy yield (P90 1 year) [MWh/y]	25,511	22,365	22,828
Full load hours - P90 (1 year)	1701	2236	2283

Table of contents

1	Intro	duction	6
2	Meth	odology	7
	2.1	WindPro and WAsP	7
	2.2	Modelling surface roughness and orography	8
	2.3	Modelling obstacles	9
3	Site [Details	10
	3.1	Location	10
	3.2	Wind Farm Layouts	11
	3.3	Roughness description	12
	3.4	Orography	15
	3.5	Obstacles	15
	3.6	Wind climate	15
	3.7		15
	3.8	Wind turbine information	15
4	Verifi	cation of Wind Climate	17
5	Resu	ts	20
	5.1	Local wind climate	20
	5.2	Losses	21
	5.3	Uncertainties	23
	5.4	Net energy yield	24
6	Concl	usions	26
Ap	pendi	A WindPro results	27
	Hoeve	nsche Beemden wind farm	27
	Laaks	e Vaart wind farm	28
	Zwart	enbergseweg wind farm	29
Ap	pendi	B Wind turbine power curves	30
Ap	pendix	C Losses and Uncertainties	32

1 Introduction

In reflection of on-going methodology improvements and tool enhancements in the field of wind resource assessments since a first report on three wind farms near the municipality of Etten-Leur was issued by Ecofys in early 2011, Eneco decided to request a new wind and yield study. The investigated wind farms Hoevensche Beemden, Laakse Vaart and Zwartenbergseweg consist of rows of five turbines each, located north-west of the town of Breda.

The wind farms are located in open agricultural area with scattered trees and houses. A group of five wind farms is formed which consisting of Hoevensche Beemden, Laakse Vaart, Van Gogh, Etten-Leur and Zwartenbergseweg, seen from west to east. Laalkse Vaart is planned to be built in the near future while the rest have been already in operation.

Using available wind data and the EMD software WindPro version 2.9, Ecofys has modelled the local wind climate and calculated the energy yield for the wind farms Laakse Vaart, Hoevensche Beemden and Zwartenbergseweg with "as built" layouts consisting of 5 Vestas model V90 of 2MW rated power wind turbines each at a hub height of 105m for Laakse Vaart and Zwartenbergseweg, and 5 Vestas model V90 of 3MW rated power wind turbines at a hub height of 105m for Hoevensche Beemden. The calculations take into account wake losses of neighbouring wind turbines which are already in operation or planned to be built (Laakse Vaart).

The proposed wind farms were analysed for energy production, losses and uncertainties. The final results are presented in terms of the P_{50} and P_{90} long-term annual energy yield.

2 Methodology

2.1 WindPro and WAsP

The software used to simulate the energy yield of the wind farm is WindPro 2.9 created by the Danish company EMD. This software bases all the analyses related to wind resource assessment on the WAsP wind flow model (version 11) developed by Risoe/DTU, Denmark. In 1987 the Wind Energy and Atmospheric Physics Department at Risø National Laboratory introduced WAsP – a powerful tool for wind data analysis, wind atlas generation, wind climate estimation and siting of wind turbines based on the European Wind Atlas, describing theory and data sets used in WAsP. Over the years, the program has become the industry standard for wind resource assessment and siting of wind turbines and wind farms and it has been employed in more than 90 countries around the world.

WAsP is a PC-program for the vertical and horizontal extrapolation of wind climate statistics. It contains several models to describe the wind flow over different terrains and close to sheltering obstacles.

WindPro, based on the main structure of WAsP, consists of five main calculation blocks:

Analysis of raw data. This option enables an analysis of any time-series of wind measurements to provide a statistical summary of the observed wind climate.

Generation of wind atlas data. Analysed wind data can be converted into a regional wind climate or wind atlas data set. In a wind atlas data set the wind observations have been 'cleaned' with respect to site-specific conditions. The wind atlas data sets are site-independent and the wind distributions have been reduced to some standard conditions. An illustration is given in Figure 1.

Wind climate estimation. Using a wind atlas data set calculated by WAsP or one obtained from another source the program can estimate the wind climate at any specific point by performing the inverse calculation as is used to generate a wind atlas. By introducing descriptions of the terrain around the predicted site, the models can predict the actual, expected wind climate at this site. There is also the possibility to set the stability of the atmosphere in this section.

Estimation of wind power potential. The total energy content of the mean wind is calculated by WAsP. Furthermore, an estimate of the actual, annual mean energy production of a wind turbine can be obtained by providing WAsP with the power curve of the wind turbine in question.

Calculation of wind farm production. Given the thrust coefficient curve of the wind turbine and the wind farm layout, WAsP can finally estimate the wake losses for each turbine in a farm and thereby the net annual energy production of each wind turbine and of the entire farm, i.e. the gross production minus the wake losses.

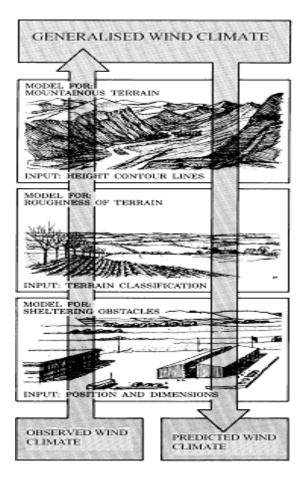


Figure 1 – WAsP Wind Atlas.

2.2 Modelling surface roughness and orography

WAsP models the roughness using the simple logarithmic wind profile reported in the equation below, where z0 is the reference roughness length, u is the wind speed and z the height (and u_{*} is the friction velocity). The authors suggest some values for different terrain's characteristics, but any value in the range $0 < z_0 < 1$ m can be used according to professional experience.

$$u = \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right)$$

The value used in WAsP for smooth surfaces like ice and water is 0.0002 m, anyway to let the program knowing that it is water instead of a smooth surface it must be set the parameter as 0. This only makes a difference in the stability considerations.

2.3 Modelling obstacles

WAsP has the possibility to model the effect on the wind flow due to obstacles. Obstacles are modelled as blocks with three dimensions (height, width and length) and an orientation. The only other parameter that is need is the porosity. The porosity is the percentage of the flow that can pass through an obstacle. For fully solid obstacles the porosity is defined as 0, a solidity of 1 means a fully transparent obstacle. In case of trees, for instance, the porosity is between 0 and 1 because the flow can pass through the leaves of the trees and the porosity augments when the vegetation density diminishes. Standard values for porosity are given in the European Wind Atlas.

3 Site Details

3.1 Location

The wind farms looked at are located in the municipalities of Etten-Leur and Oudenbosch, to the north of the town of Etten-Leur. The geographical overview is given in Figure 2. Five wind farms are operating, from west to east: Hoevensche Beemden, Laakse Vaart, Van Gogh, Etten-Leur and Zwartenbergseweg. All wind farms are aligned perpendicular to the small river Dintel (see Figure 3Figure 2).



Figure 2 – Location of the wind farm sites in the municipality of Etten-Leur.

Their environment is an open landscape with agricultural fields, scattered trees and houses. The city of Breda lies to the south east, while to the south the villages of Etten-Leur, Hoeven and Oudenbosch can be found. The river Waal is located to the north of the site. Finally to the northeast, the towns of Moerdijk, Geertruidenberg and Oosterhout can be found.

3.2 Wind Farm Layouts

The layout of the group of wind farms were specified by the client and consists of five rows of wind turbines per wind farm. Table 2 gives the coordinates of the wind turbines in the RD coordinate system. Figure 3 presents a map of the investigated wind farms at the site, and depicts the layouts under study: Hoevensche Beemden, Laakse Vaart and Zwartenbergseweg, plus the 2 other wind farms within the same area.

Figure 3 - Wind farms in the Etten-Leur & Oudenbosch Municipality.

From the above 5 wind farms Laakse Vaart is under development, while the rest are already in operation.

The wind turbine positions and wind turbine types are shown below, as they were provided by the client.

(figures in bold represent the wind farms studied; all coordinates provided by client).					
Wind farm	Turbine Type	Turbine No.	East	North	
		1	99879	403358	
		2	99879	402958	
Hoevensche Beemden (existing)	Vestas V90 3MW, 105m(hh)	3	99879	402558	
		4	99880	402158	
		5	99880	401758	
		1	100432	403937	
		2	100425	403557	
Laakse Vaart (projected)	Vestas V90 2MW, 105(hh)	3	100417	403178	
		4	100409	402798	
		5	100401	402418	
		1	104229	404720	
		2	104286	404344	
Zwartenbergseweg (existing)	Vestas V90 2MW, 105(hh)	3	104343	403968	
		4	104400	403592	
		5	104457	403216	
		1	102262	403728	
	_ /	2	102436	403556	
Etten-Leur (Groene Dijk) (existing)	Bonus 1300 1.3MW, 62m(hh)	3	102623	403393	
		4	102822	403289	
		5	102194	403965	
		1	100866	403825	
	F	2	101010	403510	
Van Gogh (Bollendonk) (existing)	Enercon E-82 2.3MW, 98.4m(hh)	3	101163	403170	
		4	101313	402847	
		5	101457	402533	

Table 2 – Wind turbine positions in RD coordinates (figures in bold represent the wind farms studied; all coordinates provided by client)

3.3 Roughness description

The roughness map of the terrain was taken from the European roughness contour dataset. These data are based on an extract from www.dataforwind.com. This roughness data was based on a

combination of Geo data and satellite-imaging programme and the information has a spatial resolution of around 3 arc sec (~200 m). For the inner area of the wind farm and its surroundings of up to 2km a refinement of this roughness map has been carried out by comparison against most recent satellite and aerial images.

The data is separated into summer and winter values; the summer value is commonly used for the wind resource assessment analysis. The use of only the summer value is due to the fact that the winter values have been seen to largely underestimate the roughness length and also it is difficult to separate the time series relating exactly the right roughness length. Thus the more conservative approach of using only the summer values is highly recommended and taken for this study.

Comparison with aerial photographs indicated a relatively good correspondence to the roughness lengths and surface type. However a manual update was performed to the dataset, to account for minor deviations in the vicinity of the wind farm region. The most significant being a small dwelling/industrial zone c.a. 2 km north-west of the Zwartenbergseweg wind farm as shown in Figure 4. Moreover, the roughness of the small forest areas within radius 1km from the wind farms as well as nearby town was properly adjusted.

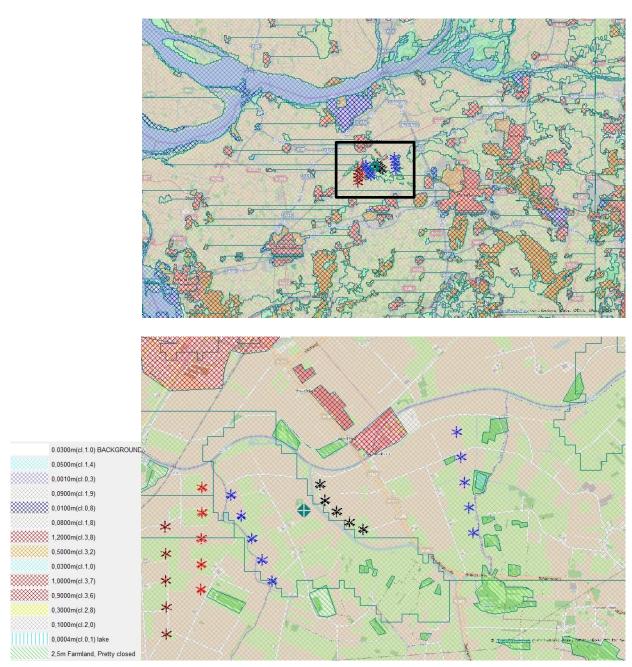


Figure 4 – Overview of roughnesses assigned to the region (top) and detailed (zooms in) map for the vicinity of the site (bottom)

Adjustments to the local roughness map were done to account for these constructions. As a validation, yield calculations with and without these modifications were performed to assess the effect of the added roughness lengths. The impact found is insignificant in terms of AEP and are covered within the uncertainty margins (0.5% difference).

3.4 Orography

The topography of the site was assumed perfectly flat at sea level height. The difference with more advanced satellite based data is minor and leads to difference in calculated yield well below 0.05%. Due to the flatness of the area, orography was not taken into account in this study.

3.5 Obstacles

Based on Algemene Hoogtekaart Nederland, and satellite images from Google Earth, it was verified that there was no influence of tall buildings or considerable obstacles on the local wind climate.

3.6 Wind climate

The local wind climate was based on the wind statistics from the nearby KNMI meteorological stations of Cabauw, at c.a. 45 kilometres from the site centre, respectively. The stations were chosen merely due to the flat terrain characteristics to the wind farms' site, added to the proximity and similarities in the local conditions. The Cabauw station was applied with a 100% weighting.

The data set used in this calculation consists of 10 years over the period 2000-2009 for the KNMI station Cabauw. KNMI is responsible for the quality and consistency of the data and provides documentation on the website (<u>www.knmi.nl</u>).

The wind climate was verified using actual production data corrected for unavailability and curtailment (see Chapter 4).

3.7 Air Density

Air density information is necessary for a good estimation of the power yield. In the current calculation, air density was based on statistical temperature and pressure data from the KNMI station at Gilze-Rijen, taken at an elevation of 11m which is located 21km of distance.

The air density calculation is based on an annual mean temperature of 9.3° C. The resulting average air density at a hub height used in the calculations is 1.237 kg/m^3 .

3.8 Wind turbine information

The wind turbine types, hub heights and positions for the three wind farms were provided by the client. Table 3 lists the important characteristics of the wind turbines. Power curve information of

these wind turbines is given in Appendix B. The power curve were provided by the client. Those power curves matched power curves already present in the EMD WindPro database.

Wind farm	Turbine Type
Hoevensche Beemden	Vestas V90 3MW, 105m(hh)
Laakse Vaart	Vestas V90 2MW, 105(hh)
Zwartenbergseweg	Vestas V90 2MW, 105(hh)

Table 3 – Wind turbine types.

4 Verification of Wind Climate

The wind climate data used for verification was recorded at the KNMI meteo station Cabauw during the period of 2000-2009. The Cabauw mast is located c.a. 45 Kilometres to the north east, in rural terrain which compares well to the site conditions near Etten-Leur, as semi-open.

The data set was subsequently treated by the WAsP program, applying a model for the terrain roughness throughout the distance from the Cabauw and stations to the location of the wind farms. After running the roughness model in the Windpro environment, the time series was transformed into a Windpro "local wind climate" for further analysis. In this case orographic models were discarded as the terrain from the stations and the wind farms themselves can be considered flat.

The local wind climate was verified against the realised AEP data of the operational wind farms Zwartenbergseweg and Hoevensche Beemden. Realised AEP data of the wind farm Laakse Vaart was not used since the wind farm is not in operation yet.

The observed production data was corrected based on technical availability over the recording period in order to be representative of the long-term wind climate of the area. Additional correction was applied for the wake losses that both wind farms have been undergone, due to the presence of significant number of wind turbines in their vicinity. Additionally for Hoevensche Beemden wind farm, further correction was applied to account for curtailment losses, which have been calculated by the Client.

In order to be representative of the long-term wind climate of the area, the treated production data was subsequently corrected based on the Windunie Windex for the Netherlands, to represent a long-term average over the period 1995-2009.

For the Hoevensche Beemden wind farm, the data provided by the client covered the period from April 2013 to March 2014 in single monthly figures, with additional information on curtailment losses and wind park availability. Due to delayed availability of the Windex (available only until end of December 2013 at time of writing), only data till the end of 2013 has been used.

For the Zwartenbergseweg wind farm, data from January till December 2013 was made available. The correlation between the Windex corrected values and calculated AEP of both wind farm was very good for the chosen wind climate; 99% for the Hoevensche Beemden wind farm and 98% for the Zwartenbergseweg wind farm.

The results for both wind farms compared to the wind climate fall well within the expected uncertainty range and therefore are considered to have been verified adequately with respect to P50/P90.

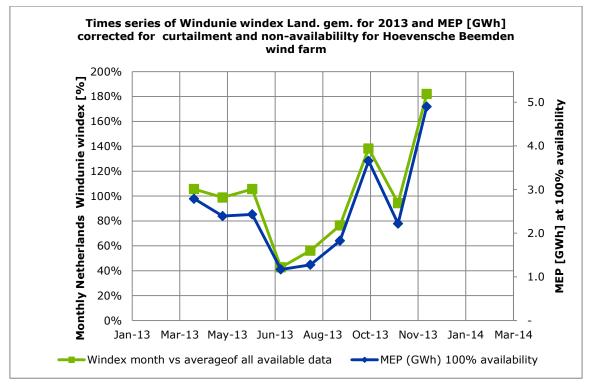
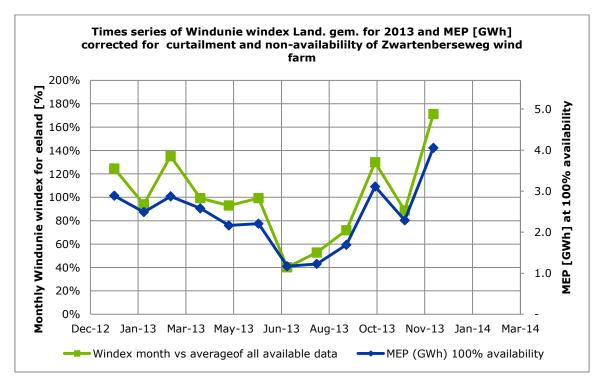
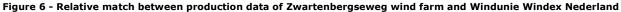




Figure 5 - Relative match between production data of Hoevensche Beemden wind farm and Windunie Windex Nederland

The resulting values are well in line with the WAsP/Windpro results if the following weighting factor is applied to the calculation: Cabauw 100%.

Ecofys therefore chose to apply this wind climate based on the weighting factor of both KNMI stations, to the AEP calculation of the three wind farms Hoevensche Beemden , Laakse Vaart, and Zwartenbergseweg.

5 Results

5.1 Local wind climate

Based on the WAsP flow modelling, the calculated mean wind speed at a height of 105 meters is 7.1 m/s. The change in wind speed with height, for the centre position between the wind farms, is shown in Table 4.

Table 4 – Wind speed variation with heigh				
Height [m]	Mean wind speed [m/s]			
45	5.84			
55	6.10			
65	6.35			
75	6.56			
85	6.75			
95	6.92			
105	7.09			
115	7.27			
125	7.45			
135	7.60			
145	7.75			

The prevailing wind direction at the site is **SSW-WSW**, whereas the strongest mean wind speed is found in the **WSW** direction. Lower mean wind speeds are found in the **Northern and Eastern** sectors. The Weibull distribution and wind roses for the wind climate in Etten-Leur are given in Figure 7. Using this climate, the gross energy yield was calculated and corrected for losses and uncertainties.

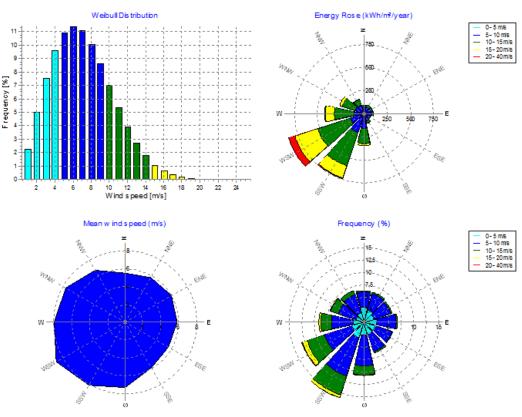


Figure 7 –Wind climate at 105 m

5.2 Losses

The possible loss factors have been divided into seven categories: wake effects, non-availability, electrical, environmental, wind turbine performance, curtailment and other.

A summary of all losses is given in Table 5. Each loss is assumed to act independently on the gross energy production. Not all loss factors may apply to a given wind farm, but the full list is provided for the sake of completeness and transparency. A generic description of each loss is given in Appendix C.

Internal wake effects were calculated using the industry-standard N.O. Jensen model with a wake decay constant of 0.075 (farmland).

Ecofys at this point clarifies that based on input from the client several standard losses have been pre-specified, including non-availability, Electrical losses, Turbine performance, environmental and others.

Hoevensche					
Loss description	Beemden	Laakse Vaart	Zwartenbergseweg		
Wake effects					
- Internal (including also external)	6.5%	10.5%	4.6%		
- External					
- Future					
Non-availability					
- Turbine	3.0%	3.0%	3.0%		
- Balance of plant					
- Grid					
- Other					
Electrical					
- Operational electrical efficiency	1.0%	1.0%	1.0%		
- Wind farm consumption					
Environmental					
- Blade contamination & degradation (build-up)	0.5%	0.5%	0.5%		
- Blade contamination & degradation (icing)					
- Shutdown due to adverse weather					
- Shutdown due to temperature					
- Site access					
- Forestry					
Wind turbine performance					
- High wind hysteresis	0.5%	0.5%	0.5%		
- Power curve adjustment (site-specific)					
- Power curve adjustment (generic)					
- Other					
Curtailment					
- Noise, visual and environmental					
- Wind sector management					
- Grid					
- Power purchase agreement					
Other					
- Other	0.5%	0.5%	0.5%		
Total	11.5%	15.4%	9.7%		

For the yield calculations of the wind farms Hoevensche Beemden, Laakse Vaart and Zwartenbergseweg, also wind farms Van Gogh and Etten Leur were considered as "existing". Thus, for each of the investigated wind farms, the internal wake losses plus the external wake losses from four neighbouring wind farms have been included.

5.3 Uncertainties

Uncertainties have been separated into two categories: those related to wind speed and those related to energy yield. The uncertainties in the wind speed prediction have been evaluated and set to the values presented in Table 6.

Uncertainty in wind statistics represents the uncertainty for quality the production data as well as the processing that these datasets underwent.

Uncertainty in vertical extrapolation to hub height was set only to 1%, as the production data against which the wind climate was verified was taken from 105 meters hub height as per wind farms.

Uncertainty description	Hoevensche Beemden	Laakse Vaart	Zwartenbergseweg
- Wind statistics	4.0%	4.0%	4.0%
- Vertical extrapolation to hub height	1.0%	1.0%	1.0%
- Horizontal extrapolation to WTG site	1.0%	1.0%	1.0%
- Long term representation	1.9%	1.9%	1.9%
- Other			
Total	4.6%	4.6%	4.6%

Table 6 - Uncertainties related to wind speed

Using the sensitivity in energy yield to a change in wind speed, it is possible to express the wind speed uncertainty in terms of an energy yield uncertainty. This factor, together with additional energy yield uncertainties, is listed in Table 7.

For Hoevensche Beemden additional uncertainty equal to 0.2 was assigned to the curtailment losses.

Table 7 - Uncertainties related to energy yield					
Uncertainty description	Hoevensche Beemden	Laakse Vaart	Zwartenbergseweg		
Sensitivity (% increase in energy yield / % increase in wind speed)	2.20	1.89	1.89		
Uncertainty in wind speed, in terms of energy yield	10.2%	8.8%	8.8%		
Energy calculation	F 00/	5.0%	E 00/		
- Power curve - Metering	5.0%	5.0%	5.0%		
- Long term correction					
- Other					
Losses					
- Wake effects	1.6%	2.6%	1.1%		
- Non-availability					
- Electrical					
- Environmental					
- Turbine Performance					
- Curtailment	0.2%				
- Other					
Total	11.5%	10.4%	10.2%		

5.4 Net energy yield

Finally, the net annual energy yield is calculated as the gross energy yield, minus all losses. This is often expressed as the P₅₀ value (the value that will be exceeded with a probability of 50%). For symmetrical distributions, the P₅₀ is equal to the mean. For financial purposes, it is also common to use the P₉₀ value (the value that will be exceeded with a probability of 90%). Assuming a Gaussian distribution of the results, the P_{90} value is P_{50} – 1.28 \times σ (where σ is the uncertainty). The results of both the P_{50} and P_{90} net energy yield are given in Table 8.

Table 8 - Overall results				
	Hoevensche Beemden	Laakse Vaart	Zwartenbergseweg	
Wind farm rated power [MW]	15	10	10	
Hub height [m]	105	105	105	
Wind speed at hub height [m/s]	7.1 ± 0.3	7.1 ± 0.3	7.1 ± 0.3	
Ideal energy yield (no losses) [MWh/y]	37143	32,902	31399	
Wake losses [%]	6% ± 2%	11% ± 3%	5% ± 1%	
Total losses [%]	12% ± 2%	15% ± 3%	10% ± 1%	
Net energy yield - P50 [MWh/y]	32,869	27,849	28,343	
Full load hours - P50	2191	2785	2834	
Uncertainty (long-term) [%]	11.5%	10.4%	10.2%	
Net energy yield (P90 long-term) [MWh/y]	28,036	24,132	24,659	
Full load hours - P90 (long-term)	1869	2413	2466	
Net energy yield (P90 1 year) [MWh/y]	25,511	22,365	22,828	
Full load hours - P90 (1 year)	1701	2236	2283	

It should be noted that for the yield calculations of the Hoevensche Beemden and Zwartenbergseweg, the wake effects of the future wind farm Laakse Vaart have been considered.

6 Conclusions

Ecofys performed a post construction wind resource and yield prediction for wind farms Hoevensche Beemden, Laakse Vaart and Zwartenbergseweg, in the municipality of Etten-Leur, the Netherlands. The layout of the total group of wind farms in which these are situated were provided by the client and consist of 5 rows of five turbines, out of which Laakse Vaart is not yet in operation.

Wind data acquired for the period 2000-2009 of the KNMI meteo station Cabauw (100%) was used as input climate in the WindPro calculations. Roughness lengths were modified according to actual conditions acquired from satellite data and corrected for recent developments.

The resulting wind climate was validated against realised production data from wind farms Hoevensche Beemden and Zwartenbergseweg. The WAsP/Windpro model results for the selected wind climate of Cabauw showed a very good match with the long-term corrected production data of both wind farms. The selected wind climate, was applied for the yield calculations of the wind farms Hoevensche Beemden, Laakse Vaart and Zwartenbergseweg.

The wind turbine energy yields were calculated, including losses and uncertainties, as presented in the preceding chapter.

Appendix A WindPro results

Hoevensche Beemden wind farm

reject:		vvinai	PRO version 2.9.269 Nov 201
wartenbergsweg po	ost construction WRA - For \	VRA in three wind farms <u>.</u>	92:02/05/061:56 / 1 Lorent Unit: Ecotys Netherlands BV Kanaalweg 15-G NL-3526 KL Utrecht +31 (0)30 862 33 00 Sofia Boutsikoudi / s.boutsikoudi@ecofys.o Center 28:4-2014 11:56/2.9.269
PARK - Main Resu	llt		
Calculation:AEP Hoe	vensche Beemden 5 x V90 3	MW at 105m	
Wake Model	N.O. Jensen (RISØ/EMD)	10 M 1	
Calculation Settings Air densily calculation mode Result for WTG at hub altitude Air density relative to standard Hub altitude above sea level (asi) Annual mean temperature at hub alt. Pressure at WTGs	Individual per WITG 1.234 kg/m² to 1.239 kg/m² 100,7 % to 101,1 % 66,0 m to 105,0 m 9,3 °C to 9,5 °C 1.000,5 hPa to 1.005,2 hPa	A.	⊕_3
VVake Model Parameters Wake Decay Constant	0,075 Open farmland	2	
VVake calculation settings Angle [*] VVind Speed [m/s start end step start end step 0,5 360,0 1,0 0,5 30,5 1,0	1	۸. 3	AA
VVInd statistics	NL Cabauw 2000-2009 (10m) - Cabauw 2000-20	09 10.00 m.llb	13110
WAsP version	WAsP 11 Version 11.00.0214	٨.5	L/Parton
	 Name of wind Type distribution 385,14 100% Cabauw_final WAsP (V 	p	nd energy Mean wind speed Equivalent roughness kWh/m²] [m/s] 3.381 7,1 2,0
] [MWh] [MWh/y]	Specific resultso) Park Capacity Mean WTG ficiency factor result [%] [%] [MWh/y] [F 93,5 23,8 6.254,4	Full load Mean wind speed hours @hub height Hours/year] [m/s] 2.085 7,1
Calculated Annual E	nergy for each of 5 new W	Gs with total 15,0 MW ra	ated power
WTG type Links Valid Manufact. Typ		ver curve ator Name	Annual Energy Park Result Result-10,0% Efficiency Mea win
3 A Yes VESTAS V90-	[kW] [m] [m] -3.000 3.000 90,0 105,0 EM -3.000 3.000 90,0 105,0 EM -3.000 3.000 90,0 105,0 EM -3.000 3.000 90,0 105,0 EM	 Level 0 - Estimated - 107.0 dB(A) Level 0 - Estimated - 107.0 dB(A) Level 0 - Estimated - 107.0 dB(A)) - 06-2009 6.843,2 6.159 91,74 7,) - 06-2009 6.858,4 6.173 92,21 7,) - 06-2009 6.941,2 6.247 93,78 7,
WTG siting Dutch Stereo-RD/h East Nort			
1 New 99.879,01 403.35 2 New 99.879,01 402.95 3 New 99.879,01 402.55 4 New 99.880,01 402.15	[m] 7.99 0.0 VESTAS V90 3000 90.0 !(7.99 0.0 VESTAS V90 3000 90.0 !(0! hub: 105,0 m (TOT: 150,0 m) (0! hub: 105,0 m (TOT: 150,0 m) (0! hub: 105,0 m (TOT: 150,0 m) (0! hub: 105,0 m (TOT: 150,0 m) (57) 58) 59)
Instead the parameters store		d to ensure consistency, please ha	SED! ave a look at Wind statistics info report. Reference WTGs'', see separate report to ide:

(*) Included in array losses is influence from 20 WTG(s) in the neighborhood, which has status as "Reference WTGs", see separate report to identify these WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 90 35 44 44, Fax +45 90 35 44 46, e-mail: windpro@emd.dk

Laakse Vaart wind farm

Search (7) Gar Hub attinues 1234 kg/m ² H (239 kg/m ²) What in main important with the intermation intermatintent intermation intermation intermation intermation in		ost constr	ructio	n WRA	- For	WRA i	n three	wind far	ns ¥2:0 205	6B 2:16 /	1		
Table Under AEP Laakse Vaart 5 x V90 2MW at 105m Nake Model N.O. Jensen (RISO/EMD) Provide in Print Provide Under State (PT) Provide Under State (PT) Visite Word in Name Town of the State (PT) DUP Open Immund Wale Model UP Open Immund Wind Internet Word in Name Town of the State (PT) UP Open Immund Wind Version Wind PT Version (PT) State (PT) Wind Immer Open Immund Wind Version Wind Immer Open Immund Wind Version Wind Immer Open Immund Wind Version Park Marker Version Wind Immer Open Immund Vind Version Park Marker Version Wind Immer Open Immund Vind Version Park Marker Version Park Mint Immer Versi									Ecofys N Kanaalw NL-3526 +31 (0)3 Sofia Bo Gesulted	letherland eg 15-G KL Utrech 0 662 33 (outsikoudi /	ls BV nt 00 / s.boutsikoudi	@ecofys.(com
Number of the set of													
And the state of the					W at	105m							
Bested Virtual Results 1,24 gpt ^{arb} 1,234 gpt ^{arb}	Nake Model	N.O. Jens	sen (RIS	Ø/EMD)				-	J.		100	9	
Name Description Outrop Spectration Outrop Spectration Star Boot as a wide base (Mark Description) Nucleasew 2000-2009 (10m) - Cataaw 2000-2009 10.00 m/s Scale 1.40.000 Star Boot as a wide base (Mark Description) Nucleasew 2000-2009 (10m) - Cataaw 2000-2009 10.00 m/s Scale 1.40.000 Key results for height 105,0 m above ground level Scale 1.40.000 Scale 1.40.000 Ferrain Dutch Steree-RD/IAP 2008 Wind energy Mean wind speed Equivalent distribution Scale 1.40.000 A 101.688.74 403.385,14 100% Cabauw_final WAsP (WAsP 11 Version 11.00.0214) 3.381 7,1 2,0 Calculated Annual Energy for Wind Farm Park Free WTGs efficiency factor result hours efficiency factor result hour factor result hours efficiency factor result hour factor result	calculation Settings Ir density calculation mode Result for WTC at hub altitude Ir density reliative to standard Hub altitude above sea level (asl) Annual mean temperature at hub alt. Pressure at WTGs	1,234 kg/m² to 100,7 % to 10 66,0 m to 105, 9,3 °C to 9,5 °	1,239 kg/r 1,1 % 0 m C				2						
atil: etc	/Vake Model Parameters Nake Decay Constant	0,075 Open f	armland						2		⊛ _A		
With the started No. Classify the started is a start of the started is a start of the started is a start of the started is started is a start of the started is started is a start of the started is started is started is a start of the started is started in the started is started is started in the started is started is started in the started is started is started in the started is started is started is started in the started is started is started is started in the started is started i	start end step start end step)					1		. <mark>А</mark>		Δc		
Market and the second of the second o	/Vind statistics	NL Cabauw 2	2000-2009	(10m) - Caba	auw 2000	-2009 10.00 m			4		1		
Knew WTG Site Data Key results for height 105.0 m above ground level Image of wind many field of the second of the seco	//AsP version	WAsP 11 Ve	rsion 11.00	0.0214					۲. 5		4		
Key results for height 105,0 m above ground level Instruction Instruction ierrain Dutch Steree-RD/NAP 2008 East North Name of wind Type Wind energy Mean wind speed Equivalent roughness A 101.0588,74 403.385,14 100% Cabauw_final WAsP (WAsP 11 Version 11.00.0214) 3.381 7,1 2.0 Calculated Annual Energy for Wind Farm Specific resultso) Capacity Mean WTG Full load Mean wind speed VTG combination Result-10.0% GROSS (no loss) Park Capacity Mean WTG Full load Mean wind speed VInd farm 29.439,6 26.496,7 32.902,1 89,5 30,2 5.299,1 2.650 7,1 Lesseron Result-10,0% File WTGs efficiency factor result Result-10,0% Efficiency Mean wind speed Name Vind farm 29.439,6 26.496,7 32.902,1 89,5 30,2 5.299,1 2.650 7,1 Lesseron Result-10,0% Efficiency Result-10,0 MWhy (Mmhy) Minh why (M							and the second s				0		
Butch Stereo-RD/NAP 2008 Worth Name of wind distribution Type Wind energy Mean wind speed Equivalent roughness A 101.058,74 403.385,14 100% Cabauw_final WASP (WASP 11 Version 11.00.0214) 3.381 7,1 2.0 Calculated Annual Energy for Wind Farm VTG combination Result 10,0% GROSS (no loss) Park Free WTGs efficie results) Full load Mean wind speed VTG transition Result 10,0% GROSS (no loss) Park Free WTGs efficie result Full load Mean wind speed VII farm PARK (MWhy) Free WTGs efficiency factor Full load Mean wind speed VII farm PARK (MWhy) Free WTGs efficiency factor Full load Mean wind speed VII farm Mind farm Source urve Annual Energy Park VII farm Type-generator Power curve Annual Energy Park VII farm WIG type [kW] [m] [m] Creator Name [mWhy] [MWh] [MWh] [MWh] [MWh] [MWh] [MWh] [Soir firms/Soir firms	Kev results for heigh	nt 105.0 n	n abo	ve arou	ind le	evel	× Ner	w WTG	Site	Data			
Link Unit Open Provide	errain Dutch Stereo-RD/	NAP 2008		-									
A 101.688,74 403.365,14 100% Cabauw_final WAsP (WAsP 11 Version 11.00.0214) 3.381 7,1 2,0 Calculated Annual Energy for Wind Farm Specific resultso) Park Capacity Mean WTG Full load Mean wind speed PARK Park Capacity Mean WTG Full load Mean wind speed PARK (MWhy] (MWh) (MWh) (MWhy] (MWhy] (MWh) (MWG type <td< th=""><th>East No</th><th></th><th></th><th>nd</th><th>Туре</th><th></th><th></th><th></th><th>Wind energy</th><th>Mean wir</th><th></th><th></th><th></th></td<>	East No			nd	Туре				Wind energy	Mean wir			
Specific resultso) NTG combination Result Result-10.0% GROSS (no loss) Park Capacity Mean WTG Full load Mean wind speed PARK Free WTGs efficiency factor result hours @hub height [MWhy] [MWh] [MWhy]	A 101 899 74 403	285 14 100	% Caba	uw final	W/AcP		Version 1	1 00 0214)				2.0	
Specific results:) WTG combination Result: Result: 10,0% GROSS (no loss) Park Free WTGs Capacity Mean WTG Full load Mean wind speed @hub height [MWh/y] [MWh/y] [MWh/y] [MWh/y] [%] [%] [MWh/y] [hub height [MWh/y] [MWh/y] [MWh/y] [%] [%] [MWh/y] [hub height Seard in Result-10,0% 26.495,7 32.902,1 89,5 30,2 5.299,1 2.660 7,1 Seard in Result-10,0% Efficiency fractor result 7,1 2.660 7,1 Seard in Result-10,0% Efficiency fractor Power curve Annual Energy Park Result: Result-10,0% Efficiency fractor WTG type Insk Valid Manufact. Type-generator Power, Rotor Hub Creator Name Result: Result-10,0% Efficiency fractor win 1A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,1 2A Yes VESTAS <th>X 101.000,14 400.</th> <th>200,14 100</th> <th></th> <th></th> <th></th> <th>(11/0) 11</th> <th>Version</th> <th>1.00.0214</th> <th>0.001</th> <th></th> <th></th> <th>2,0</th> <th></th>	X 101.000,14 400.	200,14 100				(11/0) 11	Version	1.00.0214	0.001			2,0	
Specific results:) WTG combination Result: Result: 10,0% GROSS (no loss) Park Free WTGs Capacity Mean WTG Full load Mean wind speed @hub height [MWh/y] [MWh/y] [MWh/y] [MWh/y] [%] [%] [MWh/y] [hub height [MWh/y] [MWh/y] [MWh/y] [%] [%] [MWh/y] [hub height Seard in Result-10,0% 26.495,7 32.902,1 89,5 30,2 5.299,1 2.660 7,1 Seard in Result-10,0% Efficiency fractor result 7,1 2.660 7,1 Seard in Result-10,0% Efficiency fractor Power curve Annual Energy Park Result: Result-10,0% Efficiency fractor WTG type Insk Valid Manufact. Type-generator Power, Rotor Hub Creator Name Result: Result-10,0% Efficiency fractor win 1A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,1 2A Yes VESTAS <th></th>													
NTG combination Result Result-10,0% GROSS (no loss) Park Pree WTGs Efficiency factor result hours Hours @hub height [MWh/hy] [MWh/	Laiculated Annual E	inergy to	r win	a Farm			Specific	resultsa)					
[MWh/y] [MWh/y] [MWh/y] [MWh/y] [MWh/y] [Hours/year] [m/s] Vind farm 29.439,6 26.495,7 32.902,1 89,5 30,2 5.299,1 2.660 7,1 J Based on Result-10,0% Calculated Annual Energy for each of 5 new WTGs with total 10,0 MW rated power Annual Energy Park WTG type Power curve Annual Energy Park Result-10,0% Efficiency Maa Links Valid Manufact. Type-generator Power, Rotor Hub Creator Name Result Result.10,0% Efficiency Maa 1 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.839,5 5.268 88,53 7,1 2 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.839,5 5.212 88,18 7,1 3 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.79,8 5.212 88,18 7,1 4 A <t< td=""><td></td><td></td><td>,0% G</td><td></td><td></td><td></td><td>Capacity</td><td>Mean WT</td><td></td><td></td><td></td><td></td><td></td></t<>			,0% G				Capacity	Mean WT					
Based on Result-10,0% Calculated Annual Energy for each of 5 new WTGs with total 10,0 MW rated power WTG type Links Vaiid Manufact. Type-generator Power, Rotor Hub Creator Name Power curve Creator Name Annual Energy Park Result Result-10,0% Efficiency Mea wind 1 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,1 2 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,1 3 Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.839,5 5.256 88,63 7,1 3 Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.779,8 5.212 88,18 7,0 WTG sting Dutch Stereo-RD/INAP 2008 East North Z Row data/Description [m] [m] 1 New 100.432,01 403.936,99 0,0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (51) 10.420,11 403.936,99<			1							<u> </u>	<u> </u>		
WTG type Links Over curve Valid Power curve mated Power curve diameter Annual Energy Creator Park Result 1 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,19 2 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91,49 7,1 3 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.839,5 5.256 88,63 7,1 3 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.739,8 5.212 88,18 7,0 4 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.001,5 5.401 91,52 7,0 Dutch Stereo-RD/NAP 2008		6 26.4	95,7	32	902,1	89,8	5 30,2	5.299	1 2.65	0	7,1		
WTG type Links WTG type Valid Manufact. Type-generator rated Power diameter beight Power curve Foreator Annual Energy Creator Park Result Annual Energy Result Park Result 1 A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91.49 7.1 2 A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.833,5 5.256 88.53 7.1 3 A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.773,6 5.196 87.67 7.0 4 A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.790,8 5.212 88,18 7.0 5 A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.001,5 5.401		nerav fo	r eac	h of 5 n	ew V	VTGs w	ith tota	10.0 MV	/ rated por	wer			
rated diameter height wind spec [kW] [m] [m] [MWh] [mWh	WTG type					Power cu	irve			Annual Er			
IA Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2000 0.00 0.034,2 5.431 91.49 7,1 2A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.034,2 5.431 91.49 7,1 3A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.73,8 5.196 87,87 7,0 4A Yes VESTAS V90-2.000 2.000 90.0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 5.790,8 5.212 88,18 7,0 5A Yes VESTAS V90-2.000 2.000 90.0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.001,5 5.401 91.52 7,0 WTG sitting Dutch Stereo-RD/NAP 2008 East North Z Row data/Description	Links valid Manufact. Ty	pe-generator				Greator	Name			Result	Result-10,0% E	-	wind
Vies VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MWI 1.225 25.00 0.00 5.839.5 5.256 88.63 7,1 3.A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MWI 1.225 5.00 0.00 5.839.5 5.256 88.63 7,1 4.A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MWI 1.225 5.00 0.00 5.212 88.18 7,1 5.A Yes VESTAS V90-2.000 2.000 90.0 105.0 USER 15-04-2014 V90 2MWI 1.225 5.00 0.00 5.401 91.52 7,0 VTG siting East North Z Row data/Description Image: Comparison of the compari			[kW]									[%]	[m/s
4 A Yes VESTAS V90-2:000 2:000 90:0 105:0 USER 15-04-2014 V90 2MW 1:225 25:00 0:00 5:790;8 5:212 88;18 7;0 VTG siting Dutch Stereo-RD/NAP 2008 East North Z Row data/Description [m] 1 New 100:432;01 403:936;99 0;0 VESTAS V90 2000 90:0 10! hub: 105;0 m (TOT: 150;0 m) (51) 2 New 100:417;01 403:976;99 0;0 VESTAS V90 2000 90:0! 10! hub: 105;0 m (TOT: 150;0 m) (51) 3 New 100:417;01 403:177;99 0;0 VESTAS V90 2000 90:0! 10! hub: 105;0 m (TOT: 150;0 m) (52) 3 New 100:409;01 402:797;99 0;0 VESTAS V90 2000 90:0! 10! hub: 105;0 m (TOT: 150;0 m) (53) 4 New 100:409;01 402:797;99 0;0 VESTAS V90 2000 90:0! 10! hub: 105;0 m (TOT: 150;0 m) (55) 5 New 100:401;01 402:797;99 0;0 VESTAS V90 2000<				90.0	105,0								7,1
5 A Yes VESTAS V90-2.000 2.000 90,0 105,0 USER 15-04-2014 V90 2MW 1.225 25.00 0.00 6.001,5 5.401 91,52 7,0 WTG siting Image: Dutch Stereo-RD/INAP 2008 East North Z Row data/Description [m] Image: Distance of the stereo-RD/INAP 2008 [m] Image: Distance of the stereo-RD/INAP 2000				90,0	105,0	OBER	15-04-2014	V90 2MW 1.	225 25.00 0.00		E 198	87.67	7,0
Duto Stereo-RD/NAP 2008 East North Z Row data/Description [m] 1 New 100.432.01 403.936.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (51) 2 New 100.425.01 403.556.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (52) 3 New 100.417.01 403.177.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (53) 4 New 100.409.01 402.797.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (54) 5 New 100.401.01 402.417.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (55)	2 A Yes VESTAS V9 3 A Yes VESTAS V9	0-2.000 0-2.000	2.000 2.000	90,0	105,0	USER	15-04-2014	V90 2MW 1.	225 25.00 0.00				
Dutch Stereo-RD/NAP 2008 East North Z Row data/Description [m] 1 New 100.432.01 403.936.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (51) 2 New 100.425.01 403.556.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (52) 3 New 100.417.01 403.177.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (53) 4 New 100.409.01 402.797.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (54) 5 New 100.401.01 402.417.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (55)	2 A Yes VESTAS V9 3 A Yes VESTAS V9 4 A Yes VESTAS V9	0-2.000 0-2.000 0-2.000	2.000 2.000 2.000	90,0 90,0	105,0 105,0	USER USER	15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
Duto Stereo-RD/NAP 2008 East North Z Row data/Description [m] 1 New 100.432.01 403.936.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (51) 2 New 100.425.01 403.556.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (52) 3 New 100.417.01 403.177.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (53) 4 New 100.409.01 402.797.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (54) 5 New 100.401.01 402.417.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105.0 m (TOT: 150.0 m) (55)	2 A Yes VESTAS V9 3 A Yes VESTAS V9 4 A Yes VESTAS V9	0-2.000 0-2.000 0-2.000	2.000 2.000 2.000	90,0 90,0	105,0 105,0	USER USER	15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00	5.790,8			7,(
East North Z Row data/Description [m] I New 100.432,01 403.936.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (51) 2 New 100.425,01 403.556.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (52) 3 New 100.417,01 403.177.99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (53) 4 New 100.409,01 402.797,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (54) 5 New 100.401,01 402.417,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (55)	2.A. Yes VESTAS V9 3.A. Yes VESTAS V9 4.A. Yes VESTAS V9 5.A. Yes VESTAS V9 5.A. Yes VESTAS V9	0-2.000 0-2.000 0-2.000	2.000 2.000 2.000	90,0 90,0	105,0 105,0	USER USER	15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
1 New 100.432,01 403.936,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (51) 2 New 100.425,01 403.556,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (52) 3 New 100.417,01 403.177,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (53) 4 New 100.409,01 402.797,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (54) 5 New 100.401,01 402.417,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (55)	2A Yes VESTAS V9 3A Yes VESTAS V9 4A Yes VESTAS V9 5A Yes VESTAS V9 05A Yes VESTAS V9	0-2.000 0-2.000 0-2.000 0-2.000	2.000 2.000 2.000	90,0 90,0	105,0 105,0	USER USER	15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
2 New 100.425,01 403.556,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (52) 3 New 100.417,01 403.177,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (53) 4 New 100.409,01 402.797,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (54) 5 New 100.401,01 402.417,99 0.0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (55)	2.4 Yes VESTAS V9 3.4 Yes VESTAS V9 4.4 Yes VESTAS V9 5.4 Yes VESTAS V9 WTG siting Dutch Stereo-RD/1	0-2.000 0-2.000 0-2.000 0-2.000 0-2.000	2.000 2.000 2.000 2.000	90,0 90,0 90,0	105,0 105,0 105,0	USER USER	15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
4 New 100.409,01 402.797,99 0,0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (54) 5 New 100.401,01 402.417,99 0,0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (55)	2A Yes VESTAS V9 3A Yes VESTAS V9 4A Yes VESTAS V9 5A Yes VESTAS V9 WTG siting Dutch Stereo-RD/1 East No	0-2.000 0-2.000 0-2.000 0-2.000 0-2.000 NAP 2008 with Z [m]	2.000 2.000 2.000 2.000 2.000	90,0 90,0 90,0 ta/Descrip	105,0 105,0 105,0	USER USER USER	15-04-2014 15-04-2014 15-04-2014	V90 2MW 1. V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
5 New 100.401,01 402.417,99 0,0 VESTAS V90 2000 90.0 !O! hub: 105,0 m (TOT: 150,0 m) (55)	2.4 Yes VESTAS V9 3.4 Yes VESTAS V9 4.4 Yes VESTAS V9 5.4 Yes VESTAS V9 WTG siting Dutch Stereo-RD/1 East No 1 New 100.432,01 403.5	0-2.000 0-2.000 0-2.000 0-2.000 0-2.000 0-2.000 NAP 2008 with Z [m] 038,99 0,0	2.000 2.000 2.000 2.000 Row da	90,0 90,0 90,0 ta/Descrip S V90 20	105,0 105,0 105,0 otion 00 90.	USER USER USER 0 !O! hub	15-04-2014 15-04-2014 15-04-2014 : 105,0 m	V90 2MW 1. V90 2MW 1. V90 2MW 1.	225 25.00 0.00 225 25.00 0.00 225 25.00 0.00	5.790,8			7,0
or WARP 11 and newer "WARP classic profile modeling" parameters shown have WILL NOT BE LICEDI	2 A Yes VESTAS V9 3 A Yes VESTAS V9 5 A Yes VESTAS V9 5 A Yes VESTAS V9 WTG siting Dutch Stereo-RD/f East No 1 New 100.432,01 403.5 3 New 100.417,01 403.1	0-2.000 0-2.0000 0-2.00000 0-2.00000 0-2.0000000000	2.000 2.000 2.000 2.000 2.000 Row da VESTA VESTA	90,0 90,0 90,0 ta/Descrip S V90 20 S V90 20 S V90 20	105,0 105,0 105,0 otion 00 90. 00 90. 00 90.	USER USER USER 0 !O! hub 0 !O! hub 0 !O! hub	15-04-2014 15-04-2014 15-04-2014 15-04-2014 : 105,0 m : 105,0 m	V90 2MW 1. V90 2MW 1. V90 2MW 1. V90 2MW 1. (TOT: 150,0 (TOT: 150,0 (TOT: 150,0	225 25.00 0.00 225 25.00 0.00 225 25.00 0.00 (0.00 (0.00)	5.790,8			7,0
	2.A Yes VESTAS V9 3.A Yes VESTAS V9 4.A Yes VESTAS V9 5.A Yes VESTAS V9 WTG siting Dutch Stereo-RD/1 East No 1 New 100.432,01 403.5 2 New 100.425,01 403.5 3 New 100.425,01 403.5 3 New 100.427,01 402.7	VAP 2008 vrth Z [m] vrth Z [m] vrth 200 vrth 2 [m] vrth 2 [m]	2.000 2.000 2.000 2.000 2.000 Row da VESTA VESTA VESTA	90,0 90,0 90,0 ta/Descrip S V90 20 S V90 20 S V90 20 S V90 20	105,0 105,0 105,0 00 90. 00 90. 00 90. 00 90.	0 !O! hub 0 !O! hub 0 !O! hub 0 !O! hub 0 !O! hub 0 !O! hub	15-04-2014 15-04-2014 15-04-2014 15-04-2014 105,0 m 105,0 m 105,0 m	V90 2MW 1. V90 2MW 1. V90 2MW 1. V90 2MW 1. (TOT: 150,0 (TOT: 150,0 (TOT: 150,0) (TOT: 150,0)	225 25.00 0.00 225 25.00 0.00 225 25.00 0.00 225 25.00 0.00 1 m) (51) 1 m) (52) 1 m) (53) 1 m) (53)	5.790,8			7,0

Zwartenbergseweg wind farm

Project:				in the	wind for	Printed Page	402.00 / 4	1		
Zwartenbergsweg p	ost constructi	on WRA - Fo	or WRA	in three	wind farn	Ecofys N Kanaalw NL-3526 +31 (0)3/ Sofia Bo	letherland leg 15-G KL Utrecht 0 662 33 0	s BV t 0 s.boutsikoudi	i@ecofys.	com
DADIC Main Deer						20-4-201	4 12.00/2.	3.203		
PARK - Main Res		5		0.5						
Calculation:AEP Zwa	-	-	vivv at 1	05m						
Wake Model	N.O. Jensen (F	ISØ/EMD)				1	1 36	1	and the second	
Calculation Settings Air density calculation mode Result for VTG at hub altitude Air density relative to standard Hub altitude above sea level (asil) Annual mean temperature at hub alt. Pressure at WTGs	Individual per WTG 1,234 kg/m² to 1,239 k 100,7 % to 101,1 % 66,0 m to 105,0 m 9,3 °C to 9,5 °C 1.000,5 hPa to 1.005,2	-		3		2		5	∧ ₅	2
Wake Model Parameters Wake Decay Constant	0,075 Open farmland								4	
VVake calculation settings Angle [*] VVind Speed [mi start end step start end ste 0,5 360,0 1,0 0,5 30,5 1,0	p			2	<u> </u>		×		, 3 , ↓	
VVInd statistics	NL Cabauw 2000-20	09 (10m) - Cabauw 20	00-2009 10.00	m.lib	Ð,				2	12
WAsP version	WAsP 11 Version 11	.00.0214			•				4	1
Key results for heig Terrain Dutch Stereo-RD East N A 101.688,74 403	NAP 2008 orth Name of distribution	vind Type n	2			Site I Wind energy [kWh/m²] 3.381		roug	ivalent ghness 2.0	
Calculated Annual WTG combination Resul PARP [MWh/ Wind farm 31.396	t Result-10,0% (y] [MWh]		efficien [%]	Capacity cy factor [%]	result [MWh/y]	Full load hours [Hours/year 2.82	@hub] [m	height		
 Based on Result-10,0% 										
Calculated Annual	Energy for ea	ch of 5 new			10,0 MW	rated pov				
WTG type Links Valid Manufact. Ty	/pe-generator Powe rated						Annual En Result R	esult-10,0% E	-	Mean wind speed
1 A Yes VESTAS V 2 A Yes VESTAS V 3 A Yes VESTAS V 4 A Yes VESTAS V 5 A YES V 5 A	0-2.000 2.000 0-2.000 2.000 0-2.000 2.000	90,0 105, 90,0 105, 90,0 105,	0 USER 0 USER 0 USER 0 USER 0 USER	15-04-2014 15-04-2014 15-04-2014	V90 2MW 1.2 V90 2MW 1.2 V90 2MW 1.2	25 25.00 0.00 25 25.00 0.00 25 25.00 0.00 25 25.00 0.00 25 25.00 0.00 25 25.00 0.00	6.251,5 6.225,7 6.231,7	[MWh] 5.740 5.626 5.603 5.608 5.682	[%] 97,41 95,14 94,54 94,49 95,54	7,10 7,10
WTG siting Dutch Stereo-RD/ East N	orth Z Row of	lata/Description								
1 New 104.457,01 403. 2 New 104.400,01 403. 3 New 104.343,01 403. 4 New 104.286,01 404. 5 New 104.229,01 404.	591,99 0,0 VEST 967,99 0,0 VEST 343,99 0,0 VEST	AS V90 2000 9 AS V90 2000 9 AS V90 2000 9	0.0 !O! hu 0.0 !O! hu 0.0 !O! hu	b: 105,0 m b: 105,0 m b: 105,0 m	TOT: 150,0 TOT: 150,0 TOT: 150,0	m) (32) m) (33) m) (34)				
For WAsP 11 and newer, "V Instead the parameters stor) Included in array losses i WindPRO is developed by EMD Inte	red in the Wind St s influence from 2	atistic file(s) are 0 WTG(s) in the	used to en neighbor	nsure consis hood, which	tency, please has status as	have a look Reference	WTGs", se			entify

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 90 35 44 44, Fax +45 90 35 44 40, e-mail: windpro@emd.dk

Appendix B Wind turbine power curves

Power curves of Laakse Vaart, Hoevensche Beemden and Zwartenbergseweg wind farms were provided by Eneco (Vestas V90, 105m hub height, 2MW and 3MW). Van Gogh and Etten-Leur power curves were obtained from WindPro database by Ecofys.

Vestas V90 – 2MW (Laakse Vaart and Zwartenbergseweg wind farms)

Wind Speed [m/s]	Power [kW]
4	89
5	204
6	368
7	594
8	896
9	1247
10	1599
11	1881
12	1981
13	1998
14	2000
15	2000
16	2000
17	2000
18	2000
19	2000
20	2000
21	2000
22	2000
23	2000
24	2000
25	2000

From Doc. Number: 0005-6279 V13: Provided by Eneco for Laakse Vaart wind park

Vestas V90 – 3MW (Hoevensche Beemden wind farm)

Wind Speed [m/s]	Power [kW]
4	77
5	190
6	353
7	581
8	886
9	1273
10	1710
11	2145
12	2544
13	2837
14	2965
15	2995
16	3000
17	3000
18	3000
19	3000
20	3000
21	3000
22	3000
23	3000
24	3000
25	3000

From Doc. Number: 0000-5450 V07: Provided by Eneco

Appendix C Losses and Uncertainties

The possible loss factors have been divided into seven categories: wake effects, non-availability, electrical, environmental, wind turbine performance, curtailment and other. Not all loss factors may apply to a given wind farm, but the full list is provided for the sake of completeness and transparency.

Uncertainties have been separated into three categories: wind speed, energy yield and losses.

Losses – Wake effects

Internal

Within a wind farm, turbines working downstream of another (in its wake) will experience reduced wind speeds. The magnitude of these 'wake effects' can be calculated using wake models incorporated in the wind resource software. Several studies have shown that the N.O. Jensen model estimates these losses with good accuracy (using a wake decay constant of 0.075 for onshore wind farms, and 0.040 offshore).

External

Wind turbines can also experience wake effects from neighbouring wind turbines that are not part of the wind farm being investigated. These losses are calculated in the same way as internal wake effects.

Future

These losses account for wake effects from nearby wind turbines which are expected to be constructed after the commissioning of the wind farm being investigated. These losses may be calculated, or estimated if the project details are unknown. This loss factor should be averaged over the wind farm lifetime.

Losses – Non-Availability

Wind turbine

The non-availability loss factor reflects the loss of energy yield due to wind turbine downtime. The level of likely non-availability can be estimated based on the manufacturer's guaranteed turbine availability. However, this guaranteed availability is typically in terms of the amount of time that the wind turbines will be available to produce electricity, which does not equate directly to energy yield. The loss of energy yield, as a percentage, may be higher than the percentage of downtime, as non-availability is more likely during times of high speed (and thus, high energy yield). As well, depending on the site, the guaranteed turbine availability could be regarded as conservative, and a more realistic value should be used. A final consideration is that availability is likely to change with time, so this loss factor should represent the average over the wind farm lifetime.

Typical values for non-availability are 2-3% for onshore wind turbines and 8-10% offshore.

Balance of plant

This non-availability factor includes the downtime of all components between the wind turbine and the grid connection point. An estimate of 0.3% (approximately one day per year) may be used if no site-specific information is given.

Grid

This non-availability factor covers grid downtime. Depending on the local grid strength, a value of 0.3-0.6% (one to two days per year) may be estimated.

Other

This loss factor can cover non-availability of any components that are not included elsewhere.

Losses – Electrical

Operational electrical efficiency

This loss factor includes electrical losses in all parts of the electrical infrastructure of the wind farm (cabling, transformers, substation, etc) until the metering point. This value is dependent most strongly on the distance to substation and usually ranges from 1% to 3%.

Wind turbine energy consumption

The wind turbine's internal systems (pitch, yaw, hydraulics, computer systems, etc) consume energy, which is not accounted for in the *production* power curve. Analysis of wind farm maintenance figures indicates that consumption levels of 0.5-2% are reasonable. However, in most cases, this loss factor is not included as it is instead considered as a wind farm operational cost.

Losses – Environmental

Blade contamination and degradation (build-up)

As wind turbine blades inevitably become dirty and slightly pitted, there is a reduction in their aerodynamic performance resulting in reduced energy yield. This loss can be estimated as 0.5% assuming mitigation with repairs, blade cleaning and regular precipitation.

Blade contamination and degradation (icing)

Similarly, the aerodynamic performance of blades can be reduced by temporary ice accumulation. This loss factor can be estimated based on local weather conditions or on recorded icing periods during an on-site measurement campaign.

Shutdown due to adverse weather

The wind turbine may be shutdown during adverse weather, such as lightning, hail, or sandstorms. This loss factor can be estimated based on local weather conditions, with typical values of 0.5-1% in moderate climates.

Shutdown due to temperature

Temperatures outside the wind turbine's operating envelope can also cause standstill. Again, this loss factor can be estimated based on local weather conditions, with typical values of 0.25-1% in moderate climates.

Site access

Adverse weather can also restrict access to the wind farm site, reducing availability. This loss can be included within the availability loss factors, or separately here.

Forestry

Wind farms located within or near to forests will be affected by the growth or felling of trees. This loss factor should reflect the expected impact of these forestry changes on the energy yield, averaged over the wind farm lifetime. This loss can be negative (a gain) in the case of felled trees.

Losses – Wind turbine performance

High wind hysteresis

When the wind speed exceeds the cut-out wind speed, the wind turbines will automatically shut down. However, the wind turbine will not restart immediately once the wind speed drops below the cut-out threshold, as this would lead to repeated start/stop stresses. Instead, the control system waits until the wind speed has dropped to a lower cut-in wind speed.

The precise sensitivity of a wind turbine to this effect is dependent on the control system settings and the wind regime. In general, hysteresis losses are larger at high wind sites. Typically, loss factors range from 0.3 to 4%.

Power curve adjustment (site-specific)

Wind farm sites may experience different wind conditions (turbulence, inclined flow, high shear, etc) than the simple terrain where the wind turbine power curve was certified. This factor can account for any losses due to this difference.

Power curve adjustment (generic)

This loss factor should be applied if there is reason to expect that the supplied power curve does not accurately represent the power curve that would be achieved during an IEC power curve certification.

Other

This loss factor can cover any reductions in wind turbine performance that are not included elsewhere.

Losses – Curtailment

Noise, visual and environmental

It may be necessary to curtail a wind farm to mitigate for noise, shadow flicker or environmental impacts. These impacts can be calculated or estimated based on local conditions.

This loss factor does not include the use of wind turbine modes with reduced output, as the appropriate power curves are applied in the gross energy yield calculations.

Wind sector management

Wind turbines that are closely spaced, near obstacles or other wind turbines might experience too high turbulence and may have to be curtailed to reduce loading due to wakes.

Grid

The grid connection agreement may require curtailments under certain circumstances.

Power purchase agreement

The power purchase agreement may require curtailments under certain circumstances.

Losses – Other

Other This loss factor can cover any losses that are not included elsewhere.

Uncertainties – Wind speed

Wind statistics

Measurement errors can be affected by the quality of the instruments, the calibration process, the meteorological mast design, data coverage and data processing.

Traceability of the wind data is an important factor in assessing the quality of the wind statistics. Highly traceable data allows for a precise analysis of uncertainties, while more uncertainty must be attributed to poorly traceable data.

Long term representation

The annual variability of wind speed leads to an uncertainty in the long-term representation of short-term measurements. The standard error for a single year of measurements has been statistically determined to be 5.5% (based on a large number of Dutch meteorological stations) and 6% (based on stations throughout Europe). Therefore, the standard error in measurements with a longer duration can be approximated as $\sigma = 6\%/\#$ years.

If MCP methods were used to extend a short-term time series, an additional uncertainty should be added to account for errors in this process. The quality of correlation gives a good indication of the uncertainty to be added.

Additionally, future land-use changes in the area may add uncertainty in the long-term wind climate. For instance, a change in agricultural activities or a build-up of urban areas may lead to change in the

surface roughness or in thermal characteristics. Climate change could also be expected to affect the long-term wind speed.

Horizontal extrapolation

The accuracy in the horizontal extrapolation of wind speeds depends primarily on the complexity of the terrain and the distance between the measurement site and the wind turbines. The industry standard flow modelling software (WAsP) has been used in this analysis. This flow model is well suited to simple terrain, but does not account for flow separation in hilly terrain. The ruggedness index (RIX) calculation is a good indication of the complexity of the terrain and informs the uncertainty estimation. Also, uncertainties in the flow modelling are increased if the measurement mast is not on-site or if the wind farm covers a large area.

As well, the quality of the terrain description (height contours and roughness maps) affects the accuracy of the flow modelling.

Vertical extrapolation

In order to minimise errors in vertical extrapolation, the measurement height should be close to the proposed hub height. Using a met mast with multiple instrument heights, it is possible to verify the vertical profile and estimate the uncertainties.

Larger uncertainties are inherent using measurements at the WMO standard height of 10 m (for instance, masts at airports or meteorological stations). The vertical profile is highly dependent on the surface roughness description, as well as the accuracy of the measurement height.

Other

This uncertainty can cover any additional errors related to wind speed.

Uncertainties - Relationship between wind speed and energy yield

The overall uncertainties are accounted for in terms of energy yield. Therefore, uncertainties related to wind speed must be converted to uncertainties in energy yield, based on the relationship between the two. This relationship can be calculated as the ratio of the relative increase in energy yield based on a relative increase in wind speed. Typically, these ratios are between 1 and 3. The ratio is lower at high wind sites, due to the form of the wind turbine's power curve.

Uncertainties - Energy Yield

Power curve

The power curve is a sensitive element in the calculations. The power curve guarantee varies from one manufacturer to the other, typically ranging from 95-100%.

Metering

It may be necessary to consider uncertainties in metering at the grid connection point, depending on the terms of the power purchase agreement.

Long term correction

This uncertainty applies to corrections that are applied to the predicted energy yield based on information regarding long-term trends. This should not include corrections that are applied to the wind speed, such as MCP calculations.

Other

This uncertainty can cover any additional errors related to energy yield.

Uncertainties – Losses

Uncertainties are assessed for all included losses, divided into the seven categories:

- wake effects
- non-availability
- electrical
- environmental
- wind turbine performance
- curtailment
- other

ECOFYS Netherlands B.V.

Kanaalweg 15G 3526 KL Utrecht T: +31 (0) 30 662-3300 F: +31 (0) 30 662-3301

E: info@ecofys.com I: www.ecofys.com